UNDERGROUND STORAGE TANK SITE 2296 GROUNDWATER AND BIOSPARGING MONITORING REPORT APRIL 2005 MARINE CORPS BASE CAMP PENDLETON, CALIFORNIA

Prepared For

NAVAL FACILITIES ENGINEERING SERVICE CENTER 1100 23rd Avenue, Port Hueneme, CA 93043-4301

and

NAVAL FACILITIES ENGINEERING COMMAND - SOUTHWEST DIVISION 1220 Pacific Highway, San Diego, CA 92132-5190

Contract number N47408-98-C-7500

15 JULY 2005

Prepared by

UNDERGROUND STORAGE TANK SITE 2296 GROUNDWATER AND BIOSPARGING MONITORING REPORT APRIL 2005

15 July 2005

Prepared for:

NAVAL FACILITIES ENGINEERING SERVICE CENTER PORT HUENEME, CALIFORNIA

and

SOUTHWEST DIVISION
NAVAL FACILITIES ENGINEERING COMMAND
SAN DIEGO, CALIFORNIA

Prepared by:

Cannon F. Silver, P.E.

Professional Engineer CH 5952

Project Manager

Devin Thor, R.G.

Registered Geologist No. 4080

Principal Geologist

PARSONS

100 West Walnut Street Pasadena, California 91124

CONTENTS

	Page
List of Acı	conyms and Abbreviationsiii
Section 1	Introduction 1-1 1.1 Scope of Work 1-1 1.2 Site Background 1-2 1.3 Previous Investigations 1-2 1.4 Geology and Hydrogeology 1-2 1.5 Cleanup Goals 1-2 1.6 Biosparging System 1-3 1.7 Verification Sampling 1-3
Section 2	Field Activities and Procedures2-12.1 Groundwater Level Measurements2-12.2 Groundwater Purging and Sampling2-12.3 Quality Assurance and Quality Control2-22.4 Biosparging System Operation and Maintenance2-22.5 Soil Gas Sampling2-32.6 Waste Management2-3
Section 3	Results
Section 4	Conclusions and Recommendations4-14.1 Conclusions4-14.2 Recommendations4-1
Section 5	References 5-1
Appendic	es
Appendix Appendix Appendix Appendix	B Groundwater Sampling Sheets and Waste Manifests C Laboratory Reports

TABLES

No.	Title	Section
1-1	Final Cleanup Goals	1
1-2	Hydrocarbons in Soil at Site 2296	1
1-3	Average TPH-D Removal from Biosparging Site 2296	
3-1	Summary of Groundwater Elevation Data at Site 2296	3
3-2	Summary of Petroleum Hydrocarbons in Groundwater at Site 2296	3
3-3	Recent Dissolved Oxygen Data for Site 2296	
3-4	Summary of Groundwater Geochemical Data at Site 2296	
3-5	Biosparging Soil Gas Data for Site 2296	

FIGURES

ction
.1
.1
.1
.1
.3
.3
.3
.3
.3
.3

LIST OF ACRONYMS AND ABBREVIATIONS

bgs below ground surface

BS biosparging

BSMP biosparging monitoring point

BTEX benzene, toluene, ethylbenzene, and total xylenes

CO₂ carbon dioxide DO dissolved oxygen

EPA US Environmental Protection Agency

Fe(II) ferrous iron Fe(II) ferric iron

gpm gallons per minute

HDPE high density polyethylene

HP horse power

LCS/LCSD laboratory control standard/laboratory control standard duplicate

LEL lower explosive level

LUFT leaking underground fuel tank

MCB Marine Corps Base

MCL maximum contaminant level mg/kg milligrams per kilogram mg/L milligrams per liter methyl tert-butyl ether

mV millivolt

NFESC Naval Facilities Engineering Service Center

OHM Composition Services Corp.
ORP oxidation reduction potential
O&M operation and maintenance

 O_2 oxygen

PID photo-ionization detector

QA quality assurance QC quality control

RWQCB Regional Water Quality Control Board

SAM Site Assessment and Mitigation

SPLP Synthetic Precipitation Leaching Procedure

SWDIV Southwest Division Naval Facilities Engineering Command

SVOC Semi-volatile organic compound

TBA tertiary butyl alcohol

TPH-D total petroleum hydrocarbons as diesel total petroleum hydrocarbons as motor oil

TVH total volatile hydrocarbons UST underground storage tank micrograms per liter

SECTION 1

INTRODUCTION

This groundwater monitoring report was prepared for underground storage tank (UST) Site 2296, located at Marine Corps Base (MCB) Camp Pendleton, California. Parsons prepared the report for the United States (U.S.) Navy.

The groundwater monitoring work conducted at the site, as well as the associated reporting activities, are performed for the U.S. Navy, Naval Facilities Engineering Service Center (NFESC) on behalf of the Naval Facilities Engineering Command, Southwest Division (SWDIV) under contract number N47408-98-C-7500. The report is prepared in accordance with direction from the U.S. Navy and with recommendations from the California Regional Water Quality Control Board (RWQCB), San Diego Region. In addition, the groundwater monitoring is performed in accordance with the County of San Diego Site Assessment and Mitigation (SAM) Manual (County of San Diego, 2002).

This introduction (Section 1) contains project and site background information. Section 2 contains sampling and analysis protocol and procedures. Section 3 summarizes sampling results. Section 4 contains conclusions and recommendations. Section 5 contains references cited. Appendix A provides historical groundwater elevation and analytical data. Appendix B contains groundwater sampling sheets and waste manifest forms. Appendix C contains laboratory analytical results from the latest sampling event. Appendix D contains RWQCB meeting notes from February 10, 2005.

1.1 SCOPE OF WORK

Groundwater monitoring is a component of the scope of work from the U.S. Navy for the assessment and remediation of hydrocarbon-impacted soil and groundwater at the Building 2296 maintenance facility. This monitoring includes measurements of groundwater levels and the collection and analysis of groundwater samples. In addition, this report discusses the impact on groundwater concentrations from the biosparging (BS) system that commenced operation in March 2001.

The groundwater samples are analyzed for total petroleum hydrocarbons as diesel (TPH-D). Analysis for total petroleum hydrocarbons as motor oil (TPH-M) was discontinued in July 1999 because detected concentrations were at trace levels consistently below TPH-D concentrations. Samples collected this monitoring event were also tested for the presence of semi-volatile organic compounds (SVOC), in accordance with a request by the RWQCB. Analysis for benzene, toluene, ethylbenzene, and total xylenes (BTEX) was discontinued in April 2000 because concentrations were at trace levels. Samples collected in October 2000 and from MW2296-4 in October 2001 were also tested for the presence of methyl tert-butyl ether (MTBE), other oxygenates, and the degradation product tertiary butyl alcohol (TBA) to meet updated requirements of RWQCB for site closure; none were detected, and analysis for these compounds has been discontinued.

1.2 SITE BACKGROUND

MCB Camp Pendleton is located on the coast of northern San Diego County, California, and covers approximately 125,000 acres (Figure 1-1). Site 2296 is located in the southeast portion of MCB Camp Pendleton, near the intersection of "C" Avenue and 8th Street, and about 700 ft southeast of Vandegrift Boulevard (Figure 1-2). Building 2296 is an active maintenance facility. The former 1,000-gallon, single-walled concrete, diesel UST, was located approximately 20 feet from the northern side of the maintenance buildings. The UST was removed in July 1994. Figure 1-3 presents a detailed site layout.

1.3 PREVIOUS INVESTIGATIONS

In 1994, soil investigations of the site were initiated. In 1995, Brown and Caldwell collected groundwater samples for laboratory analyses. These investigations indicated that (1) petroleum hydrocarbons had been released from the underground storage tank and/or associated piping and (2) soil and groundwater had been impacted.

In 1997 subsequent investigations further delineated the nature and extent of contamination at the site:

- TPH-D was present in both the soil and the groundwater.
- BTEX compounds toluene, ethylbenzene, and total xylenes were present in the soil.
- Toluene and xylenes were present in the groundwater.

1.4 GEOLOGY AND HYDROGEOLOGY

Site 2296 is located on a terrace above the Santa Margarita River bed. The site is underlain by Quaternary alluvial deposits of the Santa Margarita River. The shallow soils consist of silt with varying amounts of fine sand. The backfill in the cavity of the former UST 2296 extends to a depth of approximately seven feet below ground surface (bgs). Figure 1-4 presents a geologic cross-section that also illustrates the historical minimum and maximum groundwater levels and approximate extent of soil contamination in October 1997 and November 2000. The cross-section location is shown on Figure 1-3.

The groundwater beneath the site flows primarily to the southwest but the flow direction has shown variability over time, ranging from northwest to southeast. The hydraulic gradient beneath the site is relatively flat, ranging from 0.002 to 0.01. Pump tests conducted in one of the monitoring wells indicate that the hydraulic conductivity at the site may range from approximately 1.4 x 10^{-2} to 9.4 x 10^{-3} centimeters per second (OHM Remediation Services Corp. (OHM), 1998). The nearest groundwater production wells are 10S/52-13R2, located 3,000 feet up-gradient, and 10S/5W-23J1, located 4,200 feet downgradient. Calculations of capture zones indicate that Site 2296 is approximately 1,700 feet away from the edge of the 10S/5W-23J1 capture zone.

1.5 CLEANUP GOALS

The groundwater cleanup goals are identified in Table 1-1 and correspond to drinking water Maximum Contaminant Levels (MCLs) for BTEX compounds and MTBE and secondary MCLs for TPH-D. Cleanup goals were developed for soils based on a dual

standard of leachable concentrations and soil concentrations. Cleanup goals were detailed in the *Final Remediation Work Plan for Underground Storage Tank Site* 2296 (Parsons, 2000a) and modified for MTBE in groundwater according to the response to RWQCB comments (Parsons, 2000b).

1.6 BIOSPARGING SYSTEM

A BS system was installed at Site 2296 in accordance with the *Remediation Work Plan* (Parsons, 2000a), as approved by the RWQCB in a meeting on July 20, 2000. Five BS wells (BSW2296-1 through BSW2296-5) and two nested BS monitoring points (BSMPs) (BSMP2296-1 and BSMP2296-2) were installed. The system commenced operation on March 28, 2001. A letter report containing installation and startup results was submitted at a later date to the RWQCB on August 8, 2001 (Parsons, 2001a). The RWQCB responded with comments on April 30, 2002. After submittal of a response dated June 25, 2002, the RWQCB responded on August 6, 2002, that they had no additional comments at this time. The *Remediation Verification Sampling Work Plan* (Parsons, 2002) was submitted to the RWQCB on October 29, 2002.

During a meeting on February 10, 2005, the RWQCB agreed to shutdown the BS system for one year to see if TPH concentrations stabilize (see Appendix D). The system remained shutoff as of March 17, 2005.

1.7 VERFICATION SAMPLING

During February 2003, Parsons conducted remediation verification sampling at Site 2296, in accordance with the *Remediation Verification Sampling Work Plan* submitted in October 30, 2002 (Parsons, 2002) and approved by the RWQCB. The remediation verification sampling proceeded on the basis that the BS system that commenced operation in March 2001 had operated almost two years, and respiration tests conducted during 2002 indicated a low oxygen utilization rate.

The February 2003 confirmation soil sampling locations and results are illustrated on Figure 1-3. The results are also detailed in Table 1-2 (shown in bold) and are listed next to historical results collected at similar locations and depths for comparison. The estimated volume of soil containing petroleum hydrocarbon waste remaining in situ based on the latest 2003 soil sampling results is approximately 67 cubic yards, assuming contamination remains within a 15 by 40 foot area within the street at a depth of 9 to 12 feet bgs.

The 2003 soil boring TPH-D results were generally lower than the historical borings collected prior to BS. Average historical concentrations were calculated and compared to the 2003 soil confirmation results, as shown in Table 1-3. The average reduction in soil TPH-D concentrations near the capillary fringe ranged between 21% and 99% after the two years of BS operation. This apparent variance in removal may be due in part to the discrete nature of soil sampling, and hence an average reduction was calculated for the site. The average reduction in soil TPH-D concentrations for the entire site was 48%.

Soil concentrations of BTEX, MTBE, and other oxygenates were analyzed at four locations. BTEX, MTBE, and other oxygenate results were non-detect in all soil samples for each of these compounds. Synthetic Precipitation Leaching Procedure (SPLP) leachate results were analyzed at SB2296-2. TPH-D was detected in the leachate at 51

milligrams per liter (mg/L). No BTEX, MTBE, or other oxygenates were detected in these samples.

Based on the soil sampling results, it was recommended to continue biosparging through the two BSWs located in the street where residual soil contamination was identified. Based on the need to operate two BSWs rather than five, a smaller 0.75 horse-power (HP) blower was relocated (from Site 53435) to the site, and began operation in November 2003.

The system was again shutoff as of March 17, 2005, to begin a one-year verification monitoring event to see if TPH concentrations stabilize with the BS system off.

Table 1-1
Final Cleanup Goals
MCB Camp Pendleton, California

Constituent	Soil	Groundwater MCL
Benzene	SPLP = ND; Total = 0.1 mg/kg	1 μg/L
Toluene	SPLP = ND; Total = 15 mg/kg	150 μg/L
Ethylbenzene	SPLP = ND; $Total = 68 mg/kg$	680 μg/L
Total Xylenes	SPLP = ND; $Total = 175 mg/kg$	$1,750~\mu g/L$
MTBE	1	13 μg/L
TPH-D	$SPLP = ND (<100 \mu g/L)$	100 μg/L

Notes:

Soil cleanup goals assume soil attenuation factor of 100 and undetectable levels of leachable contamination.

MCL for TPH-D is a secondary MCL.

SPLP = Synthetic Precipitation Leaching Procedure.

ND = non-detect.

Table 1-2 Hydrocarbons in Soil at Site 2296 MCB Camp Pendleton, California

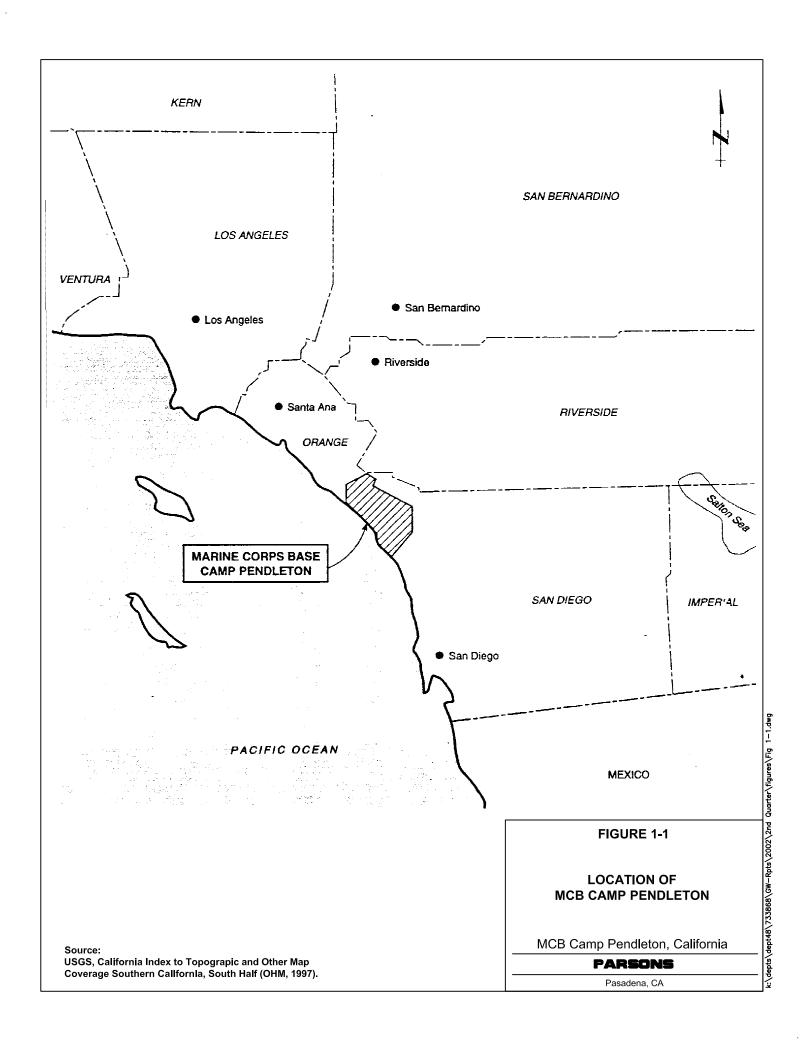
							Soil						5	PLP			
						Ethyl-		Total	MTBE,				Ethyl-		Total	MTBE,	
	Sample	Depth	Moisture	Diesel	Benzene	benzene	Toluene	Xylenes	Other	TBA	Diesel	Benzene	benzene	Toluene	Xylenes	Other	TBA
Sample ID	Date	ft la sua	D2216	M8015E	8020; 8260	8020; 8260	8020; 8260	8020; 8260	8260	8260	M8015E	8020; 8260	8020; 8260	8020; 8260	8020; 8260	8260	8260
		ft bgs	%	mg/kg	μg/kg 100	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	mg/L ND	μg/L ND	μg/L ND	μg/L ND	μg/L ND	μg/L	μg/L
Cleanup Goal					100	15,000	68,000	175,000			עא		ND		טא		
B4	6/26/95	6		<10													
B4	6/26/95	7.5		<10													
SB2296-1	2/19/03	10	21.7	6.1J													
B4	6/26/95	12		1,000	<1	<1	<1	<1.3									
B4	6/26/95	15		<10													
B4 B4	6/26/95 6/26/95	20 25		<10 <10													
RB1-027	2/26/97	8		<12													
SB2296-2	2/19/03	10	20.2	1,000	<130	<130	<130	<260	<630	<2,500	51	<1	<1	<1	<2	<5	<20
RB1-029	2/26/97	12		315	<13	59	91	725			<0.5	<0.5	<0.5	<0.5	<1.5		
BSW2296-1	11/17/00	12	20	2,200	3J	54J	6J	880J									
RB1-030	2/26/97	17		<13													
SB2296-3	2/19/03	5															
RB2-023	2/26/97	8		<12			-										
RB2-025	2/26/97	12		1,100	<13	20	45	365			0.8	<0.5	<0.5	<0.5	<1.5		
RB2-026	2/26/97	17		<13													
BSW2296-2	11/17/00	12	20	3,200	<62	70	23J	1489J									
SB2296-4	2/19/03	10	21.1	640	<130	<130	<130	<260	<630	<2,500							
SB2296-5	2/19/03	10	21.5	73	<1.3	<1.3	<1.3	<2.6	<6.4	<25							
B1	6/21/95	12		190	<0.1	<0.1	<0.1	<0.1						-		-	
B2	6/21/95	12		480	<0.5	<0.5	<0.5	<0.15									
BSMP2296-2	11/3/00	12	22.5	268	<6.5	0.3J	0.5J	3J									
BSW2296-3	11/3/00	12	22.8	568	<6.5	5J	0.4J	48J									
B3	6/21/95	10		530	<0.1	<0.1	<0.1	<0.1									
SB2296-6	2/19/03	10	21.5	53	<1.3	<1.3	<1.3	<2.6	<6.4	<25							
B3	6/21/95	12		360	<0.1	<0.1	<0.1	<0.1									
B3	6/21/95	15		31	<0.1	<0.1	<0.1	<0.1									
В3	6/21/95	20		<10			1							-			

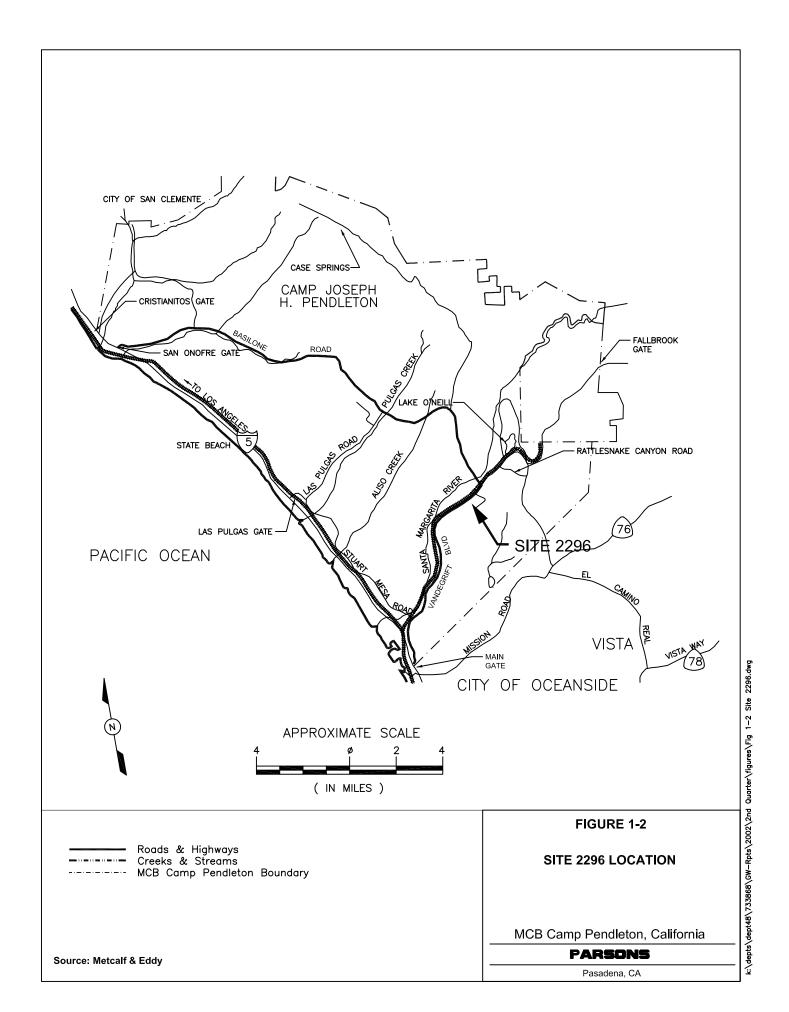
Bold = Recent soil confirmation sampling results

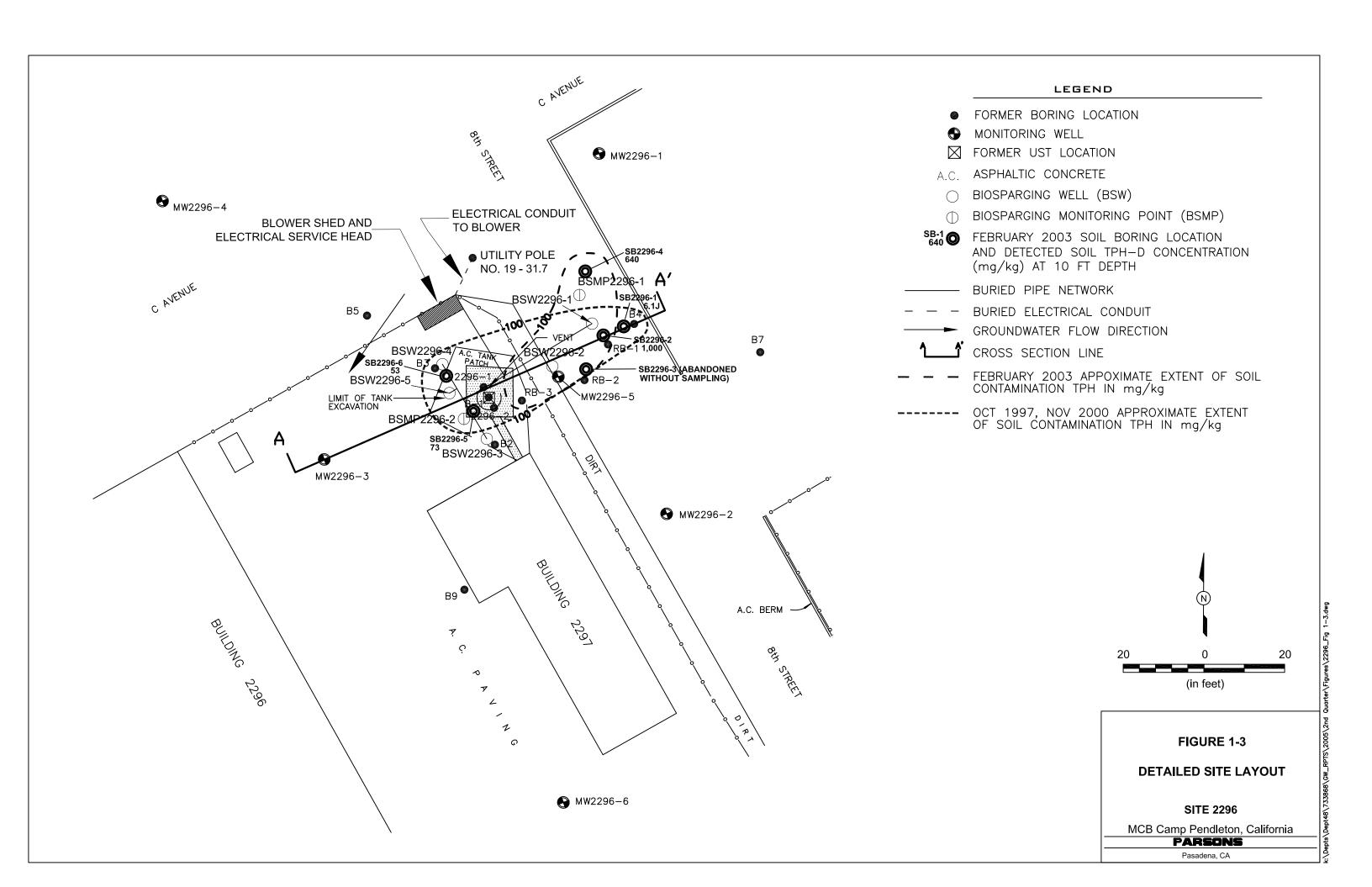
MTBE, Other = methyl tert-butyl ether, and other oxygenated compounds TBA = tertiary butyl alcohol

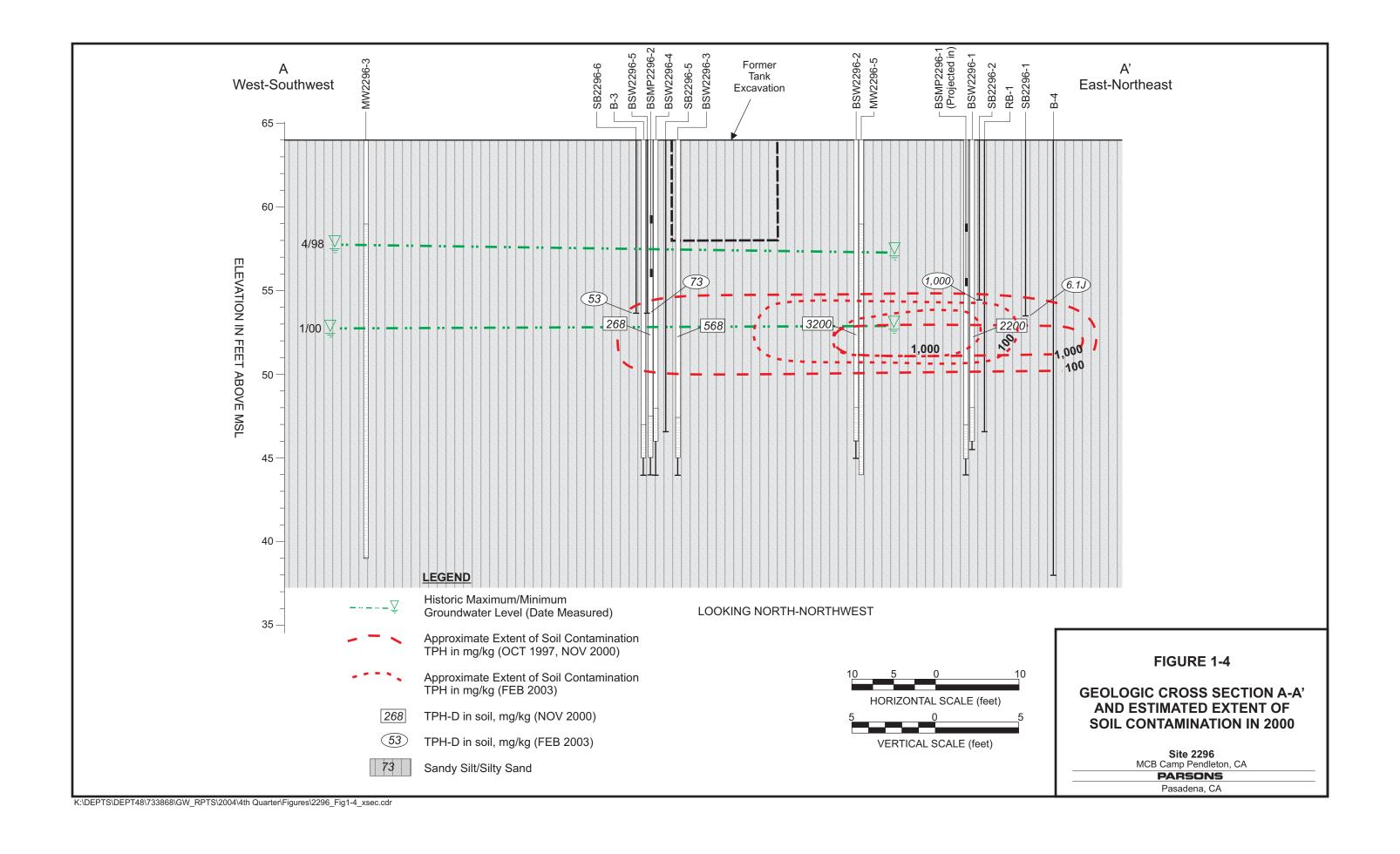
2296.XLS, soil 7/19/2005

Table 1-3
Average TPH-D Removal from Biosparging Site 2296
MCB Camp Pendleton


	Sample Groundwater F		Height Avg. Moisture (%)			Avg. TPH-D Co	% TPH-D	
Sample	Depth	Depth	Above	Before	After	Before	After	Reductiona
	(ft bgs)	(ft bgs)	GW (ft)	System	System	System	System	
SB2296-1	10	10.5	0.5	NS	21.7	1,000	6.1	99%
SB2296-2	10	10.5	0.5	20	20.2	1,258	1,000	21%
SB2296-5	10	10.5	0.5	23	21.5	452	73	84%
SB2296-6	10	10.5	0.5	NS	21.5	445	53	88%
Site 2296	10	11	0.5	22	21.2	685	354	48%


ft bgs = feet below ground surface


GW = groundwater


NS = not sampled

^aAfter two years of system operation from March 2001 through Feb. 2003

SECTION 2

FIELD ACTIVITIES AND PROCEDURES

This section describes the field activities conducted during this monitoring event and the procedures used to conduct these activities. The activities described include (1) measurement of groundwater levels, (2) collection of groundwater samples for chemical analyses, (3) collecting quality assurance/quality control groundwater samples, (4) BS system operation and maintenance (O&M), and (5) measurement of soil gas concentrations for monitoring the BS performance within the vadose zone. Also included is a discussion on the management of investigation-derived waste.

2.1 GROUNDWATER LEVEL MEASUREMENTS

On April 14, 2005, prior to the collection of groundwater samples, groundwater levels were measured in six monitoring wells (MW2296-1 through MW2296-6) at the site.

The static depth to groundwater from the top of each well casing was measured to the nearest 0.01 foot using an electric water level probe. The depth to groundwater was converted to groundwater elevation using the surveyed top-of-casing elevation for each well.

2.2 GROUNDWATER PURGING AND SAMPLING

Five site monitoring wells (MW2296-1 through MW2296-3 and MW2296-5 and MW2296-6) were purged and sampled on April 15, 2005. MW2296-4 was not sampled, in accordance with the groundwater monitoring schedule contained in the *Remediation Verification Sampling Report* (Parsons, 2003). MW2296-1 also will no longer require sampling, in accordance with the annual monitoring schedule contained in the *Remediation Verification Sampling Report*.

Prior to the collection of a groundwater sample, each well was purged using a Grundfos® Redi-Flo II® pump with high density polyethylene (HDPE)-type tubing, set at a flow rate of approximately 2 gallons per minute (gpm) or less. For purging, the volume of water contained within the well casing at the time of purging was calculated, and at least three times the calculated volume was removed from the well. Water quality parameters (pH, temperature, specific conductivity, and turbidity) were measured at regular intervals using a direct-reading meter. Dissolved oxygen (DO) concentrations and the oxygen reduction potential (ORP) were measured using a YSI 6820 instrument with a flow-through cell. The well was considered sufficiently purged when consecutive measurements of pH, temperature, and specific conductivity varied by less than 10 percent, and a minimum of three well casing volumes were removed. If a monitoring well was evacuated to a dry state during purging, the monitoring well was allowed to recharge, and the sample was collected as soon as sufficient water was present in the monitoring well to obtain the necessary sample quantity.

For the collection of samples to be analyzed for nonvolatile compounds, the pump discharge was reduced to a minimal continuous flow, and the samples were collected directly into the appropriate sample containers. Samples to be analyzed for volatile

compounds were collected by lowering a new disposable polyethylene bailer into each well and carefully pouring the water down the inner walls of the sample bottle to minimize aeration of the sample.

In general, the groundwater samples were analyzed for the following specific compounds:

- TPH-D using U.S. Environmental Protection Agency (EPA) Method 8015 Modified:
- SVOC using EPA Method 8270C; and
- Geochemical parameters including sulfate and nitrate using EPA Method 300.0; ferrous iron (Fe(II)) using EPA Method 3500DFE; alkalinity using EPA Method 310.1; and methane using RSK175.

Types of containers and volumes collected are noted on the groundwater sampling data sheets (Appendix B).

2.3 QUALITY ASSURANCE AND QUALITY CONTROL

Groundwater samples were collected and preserved in accordance with both EPA and California Leaking Underground Fuel Tank (LUFT) protocols. The samples were delivered under a chain-of-custody in a cooler with ice to a state-certified laboratory.

Three types of quality-control (QC) samples were used to assess the adequacy of sampling, decontamination, and transportation procedures. Multiple sites are sampled during a given monitoring event; therefore, QC samples are collected appropriate to the defined need of the monitoring event, but not necessarily collected at every designated site.

- A trip blank sample was transported with each cooler and analyzed by Method 8260B. The trip blanks were used to determine whether cross-contamination of volatile organic compounds occurred during transportation to the laboratory.
- An equipment blank sample was collected during the monitoring event by running distilled water over the decontaminated pump. This sample was analyzed by Method 8015M to verify that the sampling equipment was free of organic contaminants.
- Field duplicate samples were collected at the rate of one for every ten primary samples and sent to the laboratory "blind."

2.4 BIOSPARGING SYSTEM OPERATION AND MAINTENANCE

BS system O&M was performed in accordance with the O&M Manual (Parsons, 2001b) and the *Remediation Verification Sampling Report* (Parsons, 2003). Based on field observation at BSMP-2 where elevated oxygen concentrations have been maintained, BSWs-3, -4, and -5 were closed on November 6, 2002 in order to maximize air injection to BSWs-1 and -2. In February 2003, the system was cycled off to allow for site equilibrium prior to verification sampling and the blower was disconnected and relocated to another site (Site 1131). In June 2003, a smaller blower (from Site 53435) was delivered to the site. In November 2003, the system was repaired and operation began with air injection into BSWs-1 and -2.

2.5 SOIL GAS SAMPLING

Soil gas sampling from selected monitoring wells began in March 2001 prior to startup of the BS system, and has been performed periodically as needed to evaluate the effect of BS on the vadose zone. Soil gas samples were collected in a Tedlar bag using a vacuum pump. Soil gas concentrations of oxygen (O₂) and carbon dioxide (CO₂) are measured using either a Gastech GT408 meter or a Landfill Gas Analyzer GA-90, which is able to measure CO₂ concentrations above 5%. Total volatile hydrocarbons (TVH) are periodically measured using a MiniRae photo-ionization detector (PID).

2.6 WASTE MANAGEMENT

During monitoring activities, groundwater was purged into a truck-mounted polyethylene tank and transported to Crosby and Overton for treatment and disposal under a nonhazardous-waste manifest. A copy of the manifest is presented in Appendix B.

SECTION 3

RESULTS

This section presents the results of field activities conducted at the site, including groundwater level measurements and laboratory analyses of groundwater samples collected during this monitoring event. All work was conducted in accordance with the Site 2296 Remediation Work Plan (Parsons, 2000a), the sampling plan updated in the installation and startup letter report (Parsons, 2001a), and the O&M Manual (Parsons, 2001b).

3.1 GROUNDWATER ELEVATIONS

Due to winter rains, groundwater levels increased in all wells measured this monitoring event in comparison to the last monitoring event. The wells showed an average increase of 2.71 feet, with a maximum increase of 3.2 feet in MW2296-4. Table 3-1 presents a summary of groundwater elevations measured since 1997. Historical groundwater elevations are provided in Appendix A. Figure 3-1 shows a hydrograph of the groundwater elevation data collected to date.

The hydraulic gradient calculated for this site was 0.003 southwest, which is consistent with previous events. The hydraulic gradient and flow direction are illustrated on Figure 3-2. In the last three years of groundwater monitoring, the flow direction has typically varied from southwest to west.

3.2 ANALYTICAL RESULTS

A summary of petroleum hydrocarbon concentrations detected in site groundwater since July 1998 is presented in Table 3-2. Historical data are provided in Appendix A.

3.2.1 Data Quality Assessment

Five primary samples were collected during this monitoring event and submitted to the laboratory for TPH-D analysis. One sample (MW2296-5) was also analyzed for SVOC. TPH-D was detected in the equipment blank EB-01-0405 (0.014 mg/L) and non-detect in the method blank resulting in the qualification as non-detect of TPH-D reported in MW2296-2 (0.033 mg/L). TPH-D and SVOC surrogate recoveries were acceptable for all site, method blank and QC samples. Laboratory control standard/laboratory control standard duplicate (LCS/LCSD) results indicate acceptable precision and accuracy of the SVOC and TPH-D methods. Based on the review of the laboratory reports and quality assurance (QA)/QC analyses, the data were deemed acceptable and usable as reported. TPH-D was SVOC target compounds were not detected in the method blank. Collected samples were properly preserved and shipped to the laboratory at a temperature of approximately 3 °C. Laboratory reports are provided in Appendix C.

3.2.2 Groundwater Contaminants

TPH-D was detected above the cleanup goal of 0.1 mg/L in one well, MW2296-5 (3.7 mg/L). This concentration is generally consistent with recent sampling events. The concentrations of TPH-D in MW2296-5 had steadily decreased since October 2002, until this sampling period in which the concentration increased slightly.

One of the wells (MW2296-5) was analyzed for the presence of SVOCs. None were detected.

Figure 3-3 shows the concentration trend of TPH-D detected in well MW2296-5 versus groundwater elevation over time. Figure 3-4 shows the locations and results of samples collected and analyzed during this monitoring event. Historical plume extents are shown on Figure A-1 in Appendix A.

3.2.3 Geochemical Indicators

Biodegradation causes measurable changes in groundwater chemistry. Specifically, concentrations of petroleum hydrocarbons, dissolved oxygen (DO), nitrate, Fe(II), sulfate, and methane in groundwater change both temporally and spatially as biodegradation proceeds. Petroleum hydrocarbons readily serve as electron donors in both aerobic and anaerobic biodegradation processes. Electron acceptors include (in order of decreasing preference) DO, nitrate, ferric iron (Fe[III]), sulfate, and CO₂. Electron acceptors and donors are depleted during biodegradation processes. Byproducts of biodegradation include CO₂, water, nitrogen gas, Fe(II), hydrogen sulfide, and methane. Alkalinity also increases as CO₂ is produced.

One purpose of biosparging is to inject oxygen to increase groundwater DO concentrations and hence facilitate removal of petroleum hydrocarbons. DO is utilized for aerobic degradation of dissolved-phase petroleum hydrocarbons, and is most effective when DO concentration are maintained above 2 mg/L (USEPA, 2004). DO data collected since startup of the BS is listed in Table 3-3. DO concentrations have been occasionally observed above 2 mg/L. In general, this indicates that the BS system has had some but limited effectiveness in oxygenating groundwater at the site.

Additional geochemical data collected during the April 2005 groundwater monitoring event are summarized in Table 3-4. The following geochemical evaluation is primarily based on the most recently collected data (April 2005) as representative of current conditions.

During groundwater purging, field measurements of DO ranged between 0.1 mg/L and 0.79 mg/L, which generally indicate that site groundwater is anaerobic.

ORP is a measure of the relative tendency of a solution to accept or transfer electrons. The ORP potential of a groundwater system depends on (and may in turn control) which electron acceptors are being reduced by microorganisms during BTEX oxidation. Low ORP measured in the areas of contamination provide a general indication that biodegradation is occurring. The ORP of groundwater measured in the field during

groundwater purging ranged from -28.7 millivolts (mV) to -110.2 mV, thus indicating strongly reducing conditions.

Nitrate concentrations at the site ranged from 1.4 mg/L to 6.7 mg/L. The lowest nitrate concentrations measured was in MW2296-5, the only well with a history of the presence of fuel hydrocarbon. This suggests that denitrification may have occurred or is occurring within the plume.

Sulfate concentrations measured in site samples ranged from 75 mg/L to 650 mg/L. The decreased sulfate concentration within the plume relative to background concentrations indicates that sulfate reduction may be occurring within the plume.

When Fe(III) is used as an electron acceptor during the anaerobic biodegradation of organic carbon, it is reduced to Fe(II), which is soluble in water. Higher Fe(II) concentrations inside the contaminant plume versus background Fe(II) concentrations can be used as an indicator that anaerobic degradation of organic carbon has occurred or is occurring via Fe(III) reduction. Fe(II) concentrations measured during this monitoring event ranged from non-detect (<0.05 mg/L) to 0.1 mg/L. The concentrations measured during this monitoring round are uniformly low and do not suggest that iron reduction is occurring.

Methane can be a strong indicator of biodegradation. The preferred biodegradation pathways discussed above produce acetate as an intermediate product and CO_2 as a final product of TPH-D and BTEX degradation. When oxygen and other electron acceptor levels are depleted, methanogenic bacteria begin to convert CO_2 to methane. Because methane is not present in fuel, the presence of methane above background concentrations in fuel-contaminated groundwater is indicative of microbial degradation of fuel hydrocarbons. Thus, an elevated methane concentration is an excellent indicator of microbial degradation. At Site 2296, detected methane concentrations ranged from 5.6 micrograms per liter (μ g/L) to 2,000 μ g/L, with the highest concentration corresponding to MW2296-5. The presence of elevated methane within the plume area strongly indicates that biodegradation of fuel hydrocarbons via methanogenesis is occurring.

In summary, the depletion of electron acceptors (nitrate and sulfate), elevated concentrations of metabolic byproducts (methane), and low redox potential within the plume strongly indicate groundwater conditions in which biodegradation of fuel hydrocarbons is occurring.

3.3 EXPLOSION HAZARD MONITORING

The well boxes, sewer manholes, and storm drain at the site were monitored for potential explosion hazards. On March 31, 2005, a lower explosive level (LEL) meter was used at the sewer manholes and the measurements were 0.0%. Therefore, there is no explosion hazard present at the site.

3.4 SOIL GAS DATA

Soil gas monitoring data collected from the vadose zone of the BSMPs are summarized in Table 3-5. Initially the O_2 concentration in BSMP-1 was depleted (<1%) and near depletion (6.9%) at BSMP-2. The O_2 concentrations have remained elevated

(near saturated oxygen conditions) during system operation. During respiration testing (once the BS system was turned off and during the off-cycle mode) oxygen levels at BSMP-1 slowly taper off to depletion. At BSMP-2, during the off period in April/May 2001, the oxygen concentration decreased to 15% after 12 days, but in March/April 2002 only to 17% after 2 months. In March 2005, after two weeks of respiration testing, oxygen concentrations at BSMP -1-5 and BSMP-1-8.5 remained elevated (greater than 19%). This suggested that little contamination remained in the subsurface soils in this area.

Oxygen utilization rates are determined from oxygen data obtained during in situ respiration testing. The rates are calculated as the zero order relationship between percent oxygen and time. Typically, a rapid linear decrease in oxygen is observed, followed by a lag period once oxygen concentrations drop below approximately 5% (Leeson et al., 1997). Figures 3-5 and 3-6 illustrate oxygen utilization versus time, as measured in selected BSMP-1-5 and BSMP-2-5.5, respectively, during respiration testing.

Oxygen utilization rates measured at Site 2296 have steadily decreased. The oxygen utilization rate measured in BSMP-1-5 was 0.64 %/day in April 2001, decreased to 0.30 %/day in 2002, to 0.04%/day in March/April 2004, and slightly increased to 0.11%/day in March 2005. The oxygen utilization rate measured in BSMP-2-5.5 was 0.31 %/day in 2001, and decreased to 0.03%/day by April/May 2002. Due to the decrease in BSMP-2-5.5, O₂ was not monitored during 2003-2004. Essentially, oxygen is no longer being utilized within the vadose zone at this site.

Table 3-1
Summary of Groundwater Elevation Data at Site 2296
MCB Camp Pendleton, California

		Well Head	Depth to	Groundwater
Well	Date	Elevation	Water	Elevation
		(feet above MSL)	(feet)	(feet above MSL)
MW-1	3/18/1997	63.63	6.40	57.23
MW-1	6/17/1997		7.79	55.84
MW-1	10/27/1997	1	10.68	52.95
MW-1	2/4/1998		9.06	54.57
MW-1	4/6/1998		6.43	57.20
MW-1	7/20/1998		7.16	56.47
MW-1	10/21/1998		8.55	55.08
MW-1	1/25/1999		7.52	56.11
MW-1	5/13/1999		7.31	56.32
MW-1	7/19/1999		8.27	55.36
MW-1	10/4/1999		9.52	54.11
MW-1	1/25/2000		10.62	53.01
MW-1	4/3/2000		8.95	54.68
MW-1	7/23/2000		9.42	54.21
MW-1	10/15/2000		10.37	53.26
MW-1	2/7/2001		9.06	54.57
MW-1	4/27/2001		7.06	56.57
MW-1	10/10/2001		9.20	55.02
MW-1	4/24/2002		7.75	55.88
MW-1	10/15/2002		10.45	53.18
MW-1	10/10/2003		7.91	55.72
MW-1	3/29/2004		6.45	57.18
MW-1	10/21/2004		8.52	55.11
MW-1	4/14/2005		5.65	57.98
MW-2	3/18/1997	64.22	7.12	57.10
MW-2	6/17/1997		8.72	55.50
MW-2	10/28/1997		11.46	52.76
MW-2	2/4/1998		9.32	54.9
MW-2	4/6/1998		6.98	57.24
MW-2	7/20/1998		8.05	56.17
MW-2	10/21/1998		9.55	54.67
MW-2	1/25/1999		8.12	56.10
MW-2	5/13/1999		7.96	56.26
MW-2	7/19/1999		9.08	55.14
MW-2	10/4/1999		10.42	53.80
MW-2	1/25/2000		11.11	53.11
MW-2	4/3/2000		9.28	54.94
MW-2	7/23/2000		9.89	54.33
MW-2	10/15/2000		11.17	53.05
MW-2	2/7/2001		9.30	54.92
MW-2	4/27/2001		7.61	56.61
MW-2	10/10/2001		10.32	53.70
MW-2	4/24/2002		8.49	55.73
MW-2	10/15/2002		11.21	53.01
MW-2	10/10/2003		8.75	55.47
MW-2	3/29/2004		7.30	56.92
MW-2	10/21/2004		9.23	54.99
MW-2	4/14/2005		6.62	57.60

Table 3-1
Summary of Groundwater Elevation Data at Site 2296
MCB Camp Pendleton, California

		Well Head	Depth to	Groundwater
Well	Date	Elevation	Water	Elevation
1	Date	(feet above MSL)	(feet)	(feet above MSL)
MW-3	3/19/1997	64.02	6.95	57.07
MW-3	6/18/1997	04.02	8.36	55.66
MW-3	10/27/1997		11.21	52.81
MW-3	2/4/1998		9.65	54.37
MW-3	4/6/1998		7.01	54.37 57.01
MW-3	7/20/1998		7.76	
MW-3	10/21/1998		9.23	56.26 54.70
MW-3	1/25/1999		9.23 8.21	54.79 55.91
MW-3	5/13/1999		7.91	55.81
MW-3	7/19/1999		8.95	56.11
MW-3	10/4/1999	·	10.20	55.07
MW-3	1/25/2000			53.82
MW-3	4/3/2000		11.25 9.58	52.77
MW-3	7/23/2000		9.56 10.91	54.44
MW-3	10/15/2000			53.11
MW-3	2/7/2001		11.04	52.98
MW-3			9.73	54.29
MW-3	4/27/2001		7.74	56.28
MW-3	10/10/2001 4/24/2002		9.90	54.12
MW-3			8.45	55.57
MW-3	10/15/2002		11.07	52.95
MW-3	10/10/2003 3/29/2004		8.55	55.47
MW-3	10/21/2004	,	7.03	56.99
MW-3	4/14/2005	,	9.22	54.80
MW-4	10/27/1997	63.84	6.27 10.78	57.75
MW-4	2/4/1998	03.04	9.49	53.06
MW-4	4/6/1998		9.49 6.77	54.35 57.07
MW-4	7/20/1998		7.45	57.07
MW-4	10/21/1998		8.83	56.39
MW-4	1/25/1999		NM	55.01 NM
MW-4	5/13/1999		NM	
MW-4	7/19/1999		NM	NM
MW-4	10/4/1999		NM	NM
MW-4	1/25/2000		NM	NM NM
MW-4	4/3/2000	1	NM	5
MW-4	7/23/2000	ļ	NM	NM NM
MW-4	10/15/2000		NM	NM NM
MW-4	2/7/2001		NM	NM
MW-4	4/27/2001		NM	NM
MW-4	10/10/2001	· · ·	NM	I
MW-4	4/24/2002	1	1	NM EE 01
MW-4	10/15/2002		8.63	55.21 50.70
MW-4	10/15/2002		11.11	52.73
MW-4	3/29/2004		8.55	55.29
MW-4	10/21/2004		7.12	56.72
MW-4		· •	9.37	54.47
101.99-4	4/14/2005		6.17	57.67

Table 3-1
Summary of Groundwater Elevation Data at Site 2296
MCB Camp Pendleton, California

		Well Head	Depth to	Groundwater
Well	Date	Elevation	Water	Elevation
1		(feet above MSL)	(feet)	(feet above MSL)
MW-5	10/27/1997	64.10	11.18	52.92
MW-5	2/4/1998		9.28	54.82
MW-5	4/6/1998		6.84	57.26
MW-5	7/20/1998		7.80	56.30
MW-5	10/21/1998		9.25	54.85
MW-5	1/25/1999		8.00	56.10
MW-5	5/13/1999		7.82	56.28
MW-5	7/19/1999		8.85	55.25
MW-5	10/4/1999		10.19	53.91
MW-5	1/25/2000		11.07	53.03
MW-5	4/3/2000		9.34	54.76
MW-5	7/23/2000		9.69	54.41
MW-5	10/15/2000		11.00	53.10
MW-5	2/7/2001		9.41	54.69
MW-5	4/27/2001		7.55	56.55
MW-5	10/10/2001		9.86	54.24
MW-5	4/24/2002		8.34	55.76
MW-5	10/15/2002		11.04	53.06
MW-5	10/10/2003		8.57	55.53
MW-5	3/29/2004		7.09	57.01
MW-5	10/21/2004		8.47	55.63
MW-5	4/14/2005		6.35	57.75
MW-6	10/27/1997	64.07	11.37	52.7
MW-6	2/4/1998		9.13	54.94
MW-6	4/6/1998		6.83	57.24
MW-6	7/20/1998		8.05	56.02
MW-6 MW-6	10/21/1998 1/25/1999		9.60	54.47
MW-6	5/13/1999		8.17	55.90
MW-6	7/19/1999		8.01	56.06
MW-6	10/4/1999		9.22 10.51	54.85 53.56
MW-6	1/25/2000		10.51	52.90
MW-6	4/3/2000		9.28	52.90 54.79
MW-6	7/23/2000		10.18	53.89
MW-6	10/15/2000		11.26	52.81
MW-6	2/7/2001		9.30	52.81 54.77
MW-6	4/27/2001		7.65	54.77 56.42
MW-6	10/10/2001		10.15	53.92
MW-6	4/24/2002		8.48	55.59
MW-6	10/15/2002		11.24	52.83
MW-6	10/10/2003		8.84	55.23
MW-6	3/29/2004		7.32	56.75
MW-6	10/21/2004		9.18	54.89
MW-6	4/14/2005		6.65	57.42

MSL Mean sea level ND Not detected

NM Not measured (well paved over)

Bold indicates results from the most recent sampling event.

Table 3-2
Summary of Petroleum Hydrocarbons in Groundwater at Site 2296
MCB Camp Pendleton, California

Well	Sample ID	Date	TPH-D	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
			(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
lean Up	Goals 1		0.1	1	150	680	1750	13
MW-1	2296-MW1-600	7/20/1998	< 0.1	< 0.5	< 0.2	0.07 J1	< 0.4	NA
MW-1	MW 2296-1	10/22/1998	< 0.5	< 0.5	< 0.5	< 0.5	< 1.5	NA
MW-1	MW2296-1-0199	1/27/1999	< 0.5	< 0.5	< 0.5	< 0.5	< 1.5	< 5
MW-1	MW2296-1-0599	5/13/1999	< 0.5	< 0.5	< 0.6	< 0.74	< 1.6	NA
MW-1	MW2296-1-1099	10/4/1999	< 0.1	< 0.5	< 0.5	< 0.5	< 1.5	NA
MW-1	MW2296-1-1000	10/16/2000	< 0.5	NA	NA	NA	NA	NA
MW-1	MW2296-1-1001	10/10/2001	< 0.1	NA	NA	NA	NA	NA
MW-1	MW2296-1	4/24/2002	< 0.096	NA	NA	NA	NA	NA
MW-1	MW2296-1-1002	10/16/2002	< 0.096	NA	NA	NA	NA	NA
MW-1	MW2296-1-1003	10/10/2003	0.026 J1	NA	NA	NA	NA	NA
MW-1	MW2296-1-0304	3/29/2004	0.079	NA	NA	NA	NA	NA
MW-1	MW2296-1-1004	10/21/2004	0.043 J1	NA	NA	NA	NA	NA
MW-1	MW2296-1-0405	4/15/2005	< 0.096	NA	NA	NA ·	NA	NA

Estimated Value

Result is less than the PQL but greater than the MDL

L Project quantitation limit

L Method detection limit

mg/L milligram per liter µg/L microgram per liter NA not analyzed NS not sampled

MTBE methyl tert-butyl ether
EB Equipment blank
TB Trip blank

d Field duplicate sample

Sample analyzed using method SW8260B instead of method SW8021

TEX and MTBE groundwater cleanup goals correspond to drinking water maximum contaminant levels (MCLs). PH-D groundwater cleanup goals correspond to drinking water secondary MCLs.

tes: All samples were analyzed for tert-butyl alcohol, ethyl tert-butyl ether, diisopropyl ether and tert-amyl methyl ether during the October 2000 sampling even and in MW2296-4 during October 2001. All results were non-detect. Sample MW2296-4-10-01 collected and analyzed by Navy Public Works Center. Well had been paved over with asphalt. BTEX sampling of all wells discontinued per remediation work plan.

Table 3-2
Summary of Petroleum Hydrocarbons in Groundwater at Site 2296
MCB Camp Pendleton, California

Well	Sample ID	Date	TPH-D	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
			(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Clean Up	Goals 1		0.1	1	150	680	1750	13
MW-2	2296-MW2-601	7/20/1998	< 0.03	< 0.5	< 0.09	< 0.5	< 1.5	NA
MW-2	MW 2296-2	10/22/1998	< 0.5	< 0.5	< 0.5	< 0.5	< 1.5	NA
MW-2	MW2296-2-0199	1/26/1999	< 0.5	< 0.5	< 0.5	< 0.5	< 1.5	< 5
MW-2	MW2296-2-0599	5/13/1999	< 0.5	< 0.5	< 0.6	< 0.74	< 1.6	NA
MW-2	MW2296-2-1099	10/4/1999	< 0.02	< 0.5	< 0.5	< 0.5	< 1.5	NA
MW-2	MW2296-2-0400	4/4/2000	0.05 J1	NA	NA	NA	NA	NA
MW-2	MW2296-2-1000 *	10/17/2000	< 0.06	<1*	< 1 *	< 1 *	< 2 *	< 5 *
MW-2	MW2296-2-0401	5/1/2001	0.04 J1	NA	NA	NA	NA	NA
MW-2	MW2296-2-1001	10/10/2001	< 0.1	NA	NA	NA	NA	NA
MW-2	MW2296-2	4/25/2002	< 0.096	NA	NA	NA	NA	NA
MW-2	MW2296-2-1002	10/16/2002	< 0.07	NA	NA	NA	NA	NA
MW-2	MW2296-2-1003	10/10/2003	0.051 J1	NA	NA	NA	NA	NA -
MW-2	MW2296-2-0304	3/29/2004	0.053	NA	NA	NA	NA	NA
MW-2	MW2296-2-1004	10/21/2004	0.18	NA	NA	NA	NA	NA
MW-2	MW2296-2-0405	4/15/2005	< 0.033	NA	NA	NA	NA	NA

PQL Project quantitation limit

MDL Method detection limit

mg/L milligram per liter µg/L microgram per liter NA not analyzed not sampled

MTBE methyl tert-butyl ether EB Equipment blank

TB Trip blank

d Field duplicate sample

Notes: All samples were analyzed for tert-butyl alcohol, ethyl tert-butyl ether, diisopropyl ether and tert-amyl methyl ether during the October 2000 sampling even and in MW2296-4 during October 2001. All results were non-detect.

Sample MW2296-4-10-01 collected and analyzed by Navy Public Works Center. Well had been paved over with asphalt. BTEX sampling of all wells discontinued per remediation work plan.

J Estimated Value

J1 Result is less than the PQL but greater than the MDL

Sample analyzed using method SW8260B instead of method SW8021

¹ BTEX and MTBE groundwater cleanup goals correspond to drinking water maximum contaminant levels (MCLs). TPH-D groundwater cleanup goals correspond to drinking water secondary MCLs.

Table 3-2
Summary of Petroleum Hydrocarbons in Groundwater at Site 2296
MCB Camp Pendleton, California

Well	Sample ID	Date	TPH-D	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
			(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Clean Up	Goals 1		0.1	1	150	680	1750	13
MW-3	2296-MW3-602	7/20/1998	< 0.1	< 0.5	< 0.5	< 0.5	< 1.5	NA
MW-3	MW 2296-3	10/22/1998	< 0.5	< 0.5	< 0.5	< 0.5	< 1.5	NA
MW-3	MW2296-3-0199	1/27/1999	< 0.5	< 0.5	< 0.5	< 0.5	< 1.5	< 5
MW-3	MW2296-3-0599	5/13/1999	0.08 J1	< 0.5	< 0.6	< 0.74	< 1.6	NA
MW-3	MW2296-3-0799	7/21/1999	0.1 J1	< 0.5	< 0.5	< 0.5	< 0.74	< 5
MW-3 d	MW2296-99-0799	7/21/1999	0.1 J1	< 0.5	< 0.5	< 0.5	< 0.74	< 5
MW-3	MW2296-3-1099	10/4/1999	< 0.06	< 0.5	< 0.5	< 0.5	< 1.5	NA
MW-3	MW2296-3-0100	1/26/2000	0.1 J1	< 0.5	< 0.5	< 0.5	< 1.5	NA
MW-3	MW2296-3-0400	4/4/2000	0.1 J1	NA	NA	NA	NA	NA
MW-3	MW2296-3-0700	7/24/2000	< 0.2	NA	NA	NA	NA	NA
MW-3	MW2296-3-1000 *	10/17/2000	< 0.2	< 1 *	< 1 *	< 1 *	<2*	< 5 *
MW-3	2296-3-0201	2/8/2001	0.2 J1	NA	NA	NA	NA	NA
MW-3	MW2296-3-0401	5/1/2001	0.2	NA	NA	NA	NA	NA
MW-3	MW2296-3-1001	10/10/2001	0.2	NA	NA	NA	NA	NA
MW-3	MW2296-3	4/25/2002	0.2	NA	NA	NA	NA	NA
MW-3	MW2296-3-1002	10/16/2002	< 0.009	NA	NA	NA	NA	NA
MW-3	MW2296-3-1003	10/10/2003	0.14	NA	NA	NA	NA	NA
MW-3	MW2296-3-0304	3/29/2004	0.12	NA	NA	NA NA	NA	NA
MM-3	MW2296-3-1004	10/21/2004	0.092 J1	NA	NA	: NA	NA	NA
MW-3	MW2296-3-0405	4/15/2005	0.075 J1	NA	NA	NA	NA	NA
MW-4	2296-MW4-603	7/20/1998	< 0.5	< 0.5	< 0.09	< 0.5	< 0.5	NA
MW-4	MW 2296-4	10/22/1998	< 0.5	< 0.5	< 0.5	< 0.5	< 1.5	NA
MW-4	MW2296-4-10-01 *	10/2/2001	< 0.145	< 0.5 *	< 0.5 *	< 0.5 *	< 1.5 *	<1*
MW-4	MW2296-4	4/26/2002	< 0.02	NA	NA	NA	NA	NA
MW-4	MW2296-4-1002	10/16/2002	< 0.02	NA	NA	NA	NA	NA

J Estimated Value

PQL Project quantitation limit

MDL Method detection limit

mg/L milligram per liter μg/L microgram per liter NA not analyzed

not sampled

MTBE methyl tert-butyl ether EB Equipment blank

TB Trip blank
d Field duplicate sample

Notes: All samples were analyzed for tert-butyl alcohol, ethyl tert-butyl ether, diisopropyl ether and tert-amyl methyl ether during the October 2000 sampling even and in MW2296-4 during October 2001. All results were non-detect. Sample MW2296-4-10-01 collected and analyzed by Navy Public Works Center. Well had been paved over with asphalt. BTEX sampling of all wells discontinued per remediation work plan.

NS

J1 Result is less than the PQL but greater than the MDL

Sample analyzed using method SW8260B instead of method SW8021

¹ BTEX and MTBE groundwater cleanup goals correspond to drinking water maximum contaminant levels (MCLs). TPH-D groundwater cleanup goals correspond to drinking water secondary MCLs.

Table 3-2
Summary of Petroleum Hydrocarbons in Groundwater at Site 2296
MCB Camp Pendleton, California

Well	Sample ID	Date	TPH-D	Renzone	Tokuono	Ethylbenzene	Yylonoo	MTBE
	Gampie ib	Date	(mg/L)	(μg/L)	(μg/L)	Luiyibelizelle (μg/L)	-	i i
Clean Up	Goals 1	L	0.1	(μg/L)	150		(μg/L)	(μg/L)
	,	7/00// 000				680	1750	13
MW-5	2296-MW5-604	7/20/1998	2.9	0.4 J1	< 0.5	1.1	< 0.4	NA
MW-5	MW 2296-5	10/22/1998	< 0.5	< 0.5	< 0.5	< 0.5	< 1.5	NA
MW-5	MW2296-5-0199	1/28/1999	2.9	< 0.5	< 0.5	< 0.5	< 1.5	< 5
MW-5 d	MW7-2296-0199	1/28/1999	3.1	< 0.5	< 0.5	< 0.5	< 1.5	< 5
MW-5	MW2296-5-0599	5/13/1999	2.3	1	< 0.6	< 0.74	< 1.6	NA
MW-5 d	MW2296-99-0599	5/13/1999	2.5	< 0.5	< 0.6	< 0.74	< 1.6	NA
MW-5	MW2296-5-1099	10/4/1999	2.45	< 0.5	< 0.5	1	< 1.5	NA
MW-5 d	MW2296-99-1099	10/4/1999	2.47	< 0.5	< 0.5	1	< 1.5	NA
MW-5	MW2296-5-0400	4/4/2000	2.5	NA	NA	NA	NA	NA
MW-5	MW2296-5-1000 *	10/17/2000	2.8	0.3 J1 *	< 1 *	< 1 *	< 2 *	< 5 *
MW-5	MW2296-5-0401	5/1/2001	2.14	NA	NA	NA	NA	NA
MW-5	MW2296-5-1001 *	10/10/2001	2.52	<1*	< 1 *	· <1*	< 2 *	< 5 *
MW-5	MW2296-5	4/26/2002	3.89	NA	NA	NA	NA	NA
MW-5	MW2296-5-1002	10/16/2002	5.78	NA	NA	NA	NA	NA
MW-5	MW2296-5-1003	10/13/2003	5	NA	· NA	NA	NA	NA
MW-5 d	MW2296-99-1003	10/13/2003	3.2	NA	NA	NA	NA	NA
MW-5	MW2296-5-0304	3/29/2004	3.8	NA	NA	NA	NA	NA
MW-5 d	MW2296-99-0304	3/29/2004	4	NA	NA	. NA	NA	NA
MW-5	MW2296-5-1004	10/21/2004	3.4 J	NA	NA	NA	NA	NA
MW-5 d	MW2296-99-1004	10/21/2004	1.9 J	NA	NA	NA	NA	NA
MW-5	MW2296-5-0405	4/15/2005	3.7	NA	NA	NA	NA	NA

J Estimated Value

11 Result is less than the PQL but greater than the MDL

⁵QL Project quantitation limit

MDL Method detection limit

mg/L milligram per liter

μg/L microgram per liter
NA not analyzed
NS not sampled

MTBE methyl tert-butyl ether EB Equipment blank

TB Trip blank

d Field duplicate sample

Sample analyzed using method SW8260B instead of method SW8021

BTEX and MTBE groundwater cleanup goals correspond to drinking water maximum contaminant levels (MCLs). TPH-D groundwater cleanup goals correspond to drinking water secondary MCLs.

Notes: All samples were analyzed for tert-butyl alcohol, ethyl tert-butyl ether, diisopropyl ether and tert-amyl methyl ether during the October 2000 sampling even and in MW2296-4 during October 2001. All results were non-detect.

Sample MW2296-4-10-01 collected and analyzed by Navy Public Works Center. Well had been paved over with asphalt. BTEX sampling of all wells discontinued per remediation work plan.

Table 3-2 Summary of Petroleum Hydrocarbons in Groundwater at Site 2296 MCB Camp Pendleton, California

Well	Sample ID	Date	TPH-D	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
			(mg/L)	(μg/L)	(µg/L)	(μg/L)	- (μg/L)	(μg/L)
ean Up	Goals 1		0.1	1	150	680	1750	13
1W-6	2296-MW6-605	7/20/1998	< 0.5	< 0.5	< 0.09	< 0.5	< 1.5	NA
1W-6	MW 2296-6	10/23/1998	1.6 J	< 0.5	< 0.5	< 0.5	< 1.5	NA
1W-6	MW2296-6-0199	1/27/1999	< 0.5	< 0.5	< 0.5	< 0.5	< 1.5	< 5
1W-6	MW2296-6-0599	5/13/1999	< 0.5	< 0.5	< 0.6	< 0.74	< 1.6	NA
1W-6	MW2296-6-0799	7/21/1999	< 0.5	< 0.5	< 0.5	< 0.5	< 0.74	< 5
/W-6	MW2296-6-1099	10/4/1999	< 0.1	< 0.5	< 0.5	< 0.5	< 1.5	NA
1W-6	MW2296-6-0100	1/26/2000	0.1 J1	< 0.5	< 0.5	< 0.5	< 1.5	ŅA
/W-6	MW2296-6-0400	4/4/2000	0.05 J1	NA	NA	NA	NA	NA
/W-6	MW2296-6-0700	7/24/2000	< 0.5	NA	NA	NA	NA	NA
/W-6	MW2296-6-1000 *	10/17/2000	< 0.05	< 1 *	< 1 *	< 1 *	<2*	< 5 *
∕W-6	2296-6-0201	2/8/2001	0.05 J1	NA	NA	NA	NA	NA
∕W-6	MW2296-6-0401	5/1/2001	< 0.1	NA	NA	NA	NA	NA 🚽
∕ W-6	MW2296-6-1001	10/10/2001	< 0.08	NA	NA	NA	NA	NA
∕ W-6	MW2296-6	4/25/2002	< 0.096	NA	NA	NA	NA	NA
∕ IW-6	MW2296-6-1002	10/16/2002	< 0.096	NA	NA	NA	NA	NA
∕ IW-6	MW2296-6-1003	10/13/2003	0.028	NA	NA	NA	NA	NA
лW-6	MW2296-6-0304	3/29/2004	0.033	NA	NA	NA	NA	NA
∕ W-6	MW2296-6-1004	10/21/2004	0.033 J1	NA	NA	· NA	NA	NA
₩-6	MW2296-6-0405	4/15/2005	< 0.096	NA	NA	□ NA	NA	NA

Estimated Value

Result is less than the PQL but greater than the MDL

L Project quantitation limit

L Method detection limit

mg/L milligram per liter μg/L microgram per liter NΑ not analyzed NS not sampled

MTBE methyl tert-butyl ether EΒ Equipment blank TB

Trip blank

Field duplicate sample

Sample analyzed using method SW8260B instead of method SW8021

ITEX and MTBE groundwater cleanup goals correspond to drinking water maximum contaminant levels (MCLs). PH-D groundwater cleanup goals correspond to drinking water secondary MCLs.

tes: All samples were analyzed for tert-butyl alcohol, ethyl tert-butyl ether, diisopropyl ether and tert-amyl methyl ether during the October 2000 sampling even and in MW2296-4 during October 2001. All results were non-detect. Sample MW2296-4-10-01 collected and analyzed by Navy Public Works Center. Well had been paved over with asphalt. BTEX sampling of all wells discontinued per remediation work plan.

Table 3-2
Summary of Petroleum Hydrocarbons in Groundwater at Site 2296
MCB Camp Pendleton, California

Well	Sample ID	Date	TPH-D	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
	·		(mg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
lean Up	Goals ¹		0.1	1	150	680	1750	13
EB	EB-04-0599	5/13/1999	< 0.5	< 0.5	< 0.6	< 0.74	< 1.6	NA
EB	EB-01-0799	7/20/1999	< 0.5	< 0.5	< 0.5	< 0.5	< 1.5	4 J1
EB	EB-01-1099	10/6/1999	0.02 J1	< 0.5	< 0.5	< 0.5	< 1.5	< 5
EB	EB-01-0100	1/27/2000	NA	< 0.5	< 0.5	< 0.5	< 1.5	NA
EB	EB-01-0400	4/11/2000	< 0.5	< 0.5	< 0.5	< 0.5	< 2	NA
EB	EB01-0700	7/25/2000	0.08 J1	< 0.5	< 0.5	< 0.5	< 1.5	NA
EB	EB-01-1000	10/16/2000	< 0.5	NA	NA	NA	NA	NA
EB	EB-02-1000 *	10/17/2000	0.08 J1	<1*	< 1 *	< 1 *	<2*	< 5 *
EB	EB-01-0201	2/8/2001	< 0.5	< 0.5	< 0.5	< 0.5	0.9	< 5
EB	EB06-0401 *	5/1/2001	< 0.1	< 1 *	< 1 *	< 1 *	< 2 *	< 5 *
EB	EB-01-1001 *	10/10/2001	0.04 J1	< 1 *	<1*	< 1 *	< 2 *	< 5 *
EB	QCEB	4/25/2002	< 0.096	0.3 J1	0.5 J1	0.8	0.9 J1	NA 1
EB	QCEB	4/26/2002	< 0.096	< 0.5	0.4 J1	0.9	1	NA
EB	QCEB01-1002	10/16/2002	0.2	NA	NA	NA	NA	- NA
EB	EB-01-1003	10/16/2003	< 0.096	0.11 J1	0.46 J1	< 0.5	1.9	NA
EB	EB-01-0404	4/1/2004	< 0.096	0.2 J1	0.65	< 0.5	1.5	< 5 *
EB	EB-01-0405 *	4/11/2005	0.014 J1	<1	0.69 J1	1	< 3.7	NA
ТВ	TB-04-0599	5/13/1999	NA	< 0.5	< 0.6	< 0.74	< 1.6	NA
ŦВ	TRIP BLANK	7/21/1999	NA	< 0.5	< 0.5	< 0.5	< 0.74	< 5
ТВ	TB-01-1099	10/4/1999	NA	< 0.5	< 0.5	< 0.5	< 1.5	NA
ТВ	TRIP BLANK	1/26/2000	NA	< 0.5	< 0.5	< 0.5	< 1.5	NA
ТВ	TB-01-1000 *	10/17/2000	NA	< 1 *	<1*	< 1 *	< 2 *	< 5 *
ТВ	TB-01-1001 *	10/10/2001	NA	<1*	<1*	< 1 *	<2*	<5*
ТВ	QCTB	4/25/2002	NA	< 0.5	0.3 J1	< 0.5	0.8 J1	NA
ТВ	QCTB	4/26/2002	NA	< 0.5	0.4 J1	0.8	1.3	NA

Estimated Value

Result is less than the PQL but greater than the MDL

- Project quantitation limit

L Method detection limit

mg/L milligram per liter µg/L microgram per liter NA not analyzed

NA not analyzed NS not sampled

MTBE methyl tert-butyl ether EB Equipment blank

TB Trip blank

d Field duplicate sample

Sample analyzed using method SW8260B instead of method SW8021

FEX and MTBE groundwater cleanup goals correspond to drinking water maximum contaminant levels (MCLs). PH-D groundwater cleanup goals correspond to drinking water secondary MCLs.

es: All samples were analyzed for tert-butyl alcohol, ethyl tert-butyl ether, diisopropyl ether and tert-amyl methyl ether during the October 2000 sampling even and in MW2296-4 during October 2001. All results were non-detect. Sample MW2296-4-10-01 collected and analyzed by Navy Public Works Center. Well had been paved over with asphalt. BTEX sampling of all wells discontinued per remediation work plan.

Table 3-3 Recent Dissolved Oxygen Data for Site 2296 MCB Camp Pendleton, California

Monitoring	BSMP-1-19		BSMF	P-2-19	MV	W-1	MV	N-3	MW-5		
_	7.5 ft from E		7 ft from BS		40 ft from B		33 ft from B		4 ft from BS		
	Time	DO	Time	DO	Time	DO	Time	DO	Time	DO	
DATE	10	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	
Baseline mo	nitorina	(111g/L)		(1119/2)		(mg/=/		\g/ <i>=</i> /		\g/ <i>=</i> /	
03/28/01	0914	2.47	0854	0.09	0831	0.13	0837	0.12	0816	0.19	
System star											
03/28/01	1047	1.89	1059	0.09	1050	0.14	=	-	1054	0.11	
03/28/01	1106	4.04	1116	0.07	-	-	1121	0.09	1112	0.11	
03/28/01	1127	2.62	1139	0.08	1131	0.08	-	-	1135	0.34	
03/28/01	1201	3.75	1216	0.08	1208	0.10	1221	0.09	1211	0.77	
03/28/01	1245	5.49	1301	0.09	1251	0.10	-	-	1255	2.12	
03/28/01	1347	4.41	1404	0.08	1357	0.08	1411	0.08	1403	3.13	
03/29/01	1151	5.01	1123	0.12	1139	0.10	1121	0.16	1137	6.32	
03/30/01	0752	4.53	0738	0.11	0754	0.11	0740	0.17	0749	6.56	
04/02/01	1159	3.34	1142	0.10	1154	0.09	1136	0.14	1147	7.47	
04/06/01	0940	2.34	0901	0.09	0932	2.00	0851	0.19	0923	7.57	
04/11/01	1208	2.60	1313	0.09	1231	0.09	1257	0.15	1235	7.39	
04/20/01	0816	0.70	0752	0.05	0802	0.06	0743	0.10	0807	7.75	
System shu	t-off/resp	iration tes	sting: 04/2	20/01 09:1	2						
04/20/01	1016	1.07	1014	0.09	1017	0.10	1013	0.08	1015	7.31	
04/20/01	1442	0.83	1501	0.08	1457	0.13	-	-	1455	3.43	
04/23/01	1334	0.05	1412	0.06	1327	0.06	1418	0.06	1359	0.13	
05/02/01	1018	0.09	1105	0.06	-	-	1053	0.07	1033	0.08	
07/13/01	1130	0.08	-	-	1130	0.13	1115	0.26	1125	0.13	
System rest	arted: 07	/13/01									
09/24/01	1130	0.18	1040	0.16	1115	0.43	1102	0.17	1121	0.15	
System shu	tdown pri	or to gro	undwater	sampling	g event: 9	9/24/01 11	:50				
10/10/01	-	1	-	-	951	0.96	1438	0.38	1151	0.49	
System shu	tdown pri	or to gro	undwater	sampling	g event: (03/28/02 1	0:00				
04/25/02	-	-	-	-	1524	0.31	1341	0.04	1253	0.22	
System cyc	led off: 0	6/07/02									
07/02/02	1223	4.86	1245	2.00	-	-	-	-	-	-	
07/11/02	0939	0.55	0915	0.34	-	-	-	-	-	-	
System cyc											
System shu		06/02 16:3	80								
09/17/02	1045	1.81	-	-	-	-	-	-	-	-	
10/16/02	0930	3.75	-	-	1113	0.74	902	8.7	1139	0.7	
10/25/02	0831	1.12	-	-	-	-	-	-	-		
10/31/02	1255	0.6	-	-		-	-	-			
System cyc					<u>6/02 11:0</u>	<u> </u>		T			
02/10/03	1300	0.55	1322	0.48	-	-	-	-	1308	9.43	
System cyc				1	1	I	1	I	T	ı	
02/14/03	0954	0.83	1015	0.24	-	-	-	-	1001	3.06	
10/10/03	-	-	<u>-</u>	-	1207	0.01	1410	0.05	746	0.13	
System cyc								1	_		
02/16/03		6.35	-	-	-	-	-	-		7.8	
03/19/04	-	8.25	-	-	-	-	-	-		6.9	
System cyc	ed off 3/1			-	-	-	-	-	-	-	
03/22/04	-	6.8	-	-	-	-	-	-	-	1.18	
03/26/04	-	-	-	-	1049	0.27	1241	0.22	1340	1.1	

Table 3-3 Recent Dissolved Oxygen Data for Site 2296 MCB Camp Pendleton, California

System cyc	led on wit	th smaller	blower i	n BSW-1	and -2: 0	4/16/04 07	730							
System cyc	System cycled off 9/21/04 at 1310													
09/21/04	-	0.38	-	-	-	-	-	-	-	0.23				
09/22/04	-	0.48	-	-	-	-	-	-	-	0.39				
10/02/04	-	0.25	-	-	-	-	-	-	-	0.19				
10/21/04	-	-	-	-	1427	0.78	1447	0.88	1522	0.74				
System cyc	led on 11	/10/04												
02/02/05	-	4.96	-	-	-	-	-	-	-	0.75				
System off:	03/17/05				_									
03/22/05	1045	5.34	-	-	-	-	-	-	1045	0				
03/31/05	0935	1.08	-	-	-	-	-	-	0935	2.06				

DO = dissolved oxygen mg/L = milligrams per liter

Table 3-4 Summary of Groundwater Geochemical Data at Site 2296 MCB Camp Pendleton, California

Well	Date	DO	Nitrate	Sulfate	Fe (II)	CH4	ORP	CO2	Alkalinity
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(mV)	(ppm)	(mg/L)
MW1	3/19/1997	NA	<0.2	544	NA	109	NA NA	NA NA	1920
MW1	6/20/1997	NA	<2	610	NA	144	NA	NA	1990
MW 1	10/27/1997	3.7	<1.6	495	ND	141	30	NA	1980
MW1	2/4/1998	1.4	<2	500	ND	180	78	NA NA	1950
MW1	4/6/1998	2.68	<3.2	630	NA	43.8	136	NA NA	1910
MW1	7/20/1998	1.8	7 J1	490	0.01	57	95.6	90	2080
MW1	10/22/1998	0.28	<16	670	0	74	119.6	>100	1460
MW1	1/27/1999	8.22	<20	750	0.0	21	81.1	65	1600
MW1	4/15/2005	0.311	3.6 J1	300	0.1	17	-49.11	NA	1800
MW2	3/19/1997	NA	<0.04	162	NA	10	NA	NA	635
MW2	6/20/1997	NA	0.44	176	NA	20.9	NA NA	NA	728
MW2	10/27/1997	1.9	<0.4	147	ND	33	80	NA	799
MW2	2/4/1998	1.82	0.37	16	ND	<3	67	NA	209
MW2	4/6/1998	NA	<0.4	172	ND	11.2	127	NA NA	659
MW2	7/20/1998	6.26	5	120	0.13	15	20.9	30	660
MW2	10/22/1998	0.2	<2	170	0	23	130.4	45	740
MW2	1/27/1999	1.25	<4	190	0.04	12	71.2	24	720
_MW2	4/15/2005	0.11	2.2	75	< 0.05	13	- 33.31	NA.	300
МЖЗ	3/19/1997	NA	<0.2	600	NA	407	NA	NA	1310
MWз	6/18/1997	NA	<2	646	NA	540	NA	NA	1320
мwз	10/27/1997	3.5	<2	589	ND	284	60	NA	1230
MW3	2/4/1998	0.62	<2	582	ND	630	67	NA	1270
EWM	4/6/1998	0.56	<3.2	700	0.01	3.83	126	NA	1270
МWЗ	7/20/1998	0.33	<10	610	0	320	92.4	70	1480
МW3	10/22/1998	0.04	<8	730	0.09	210	144.7	38	1260
МW3	1/27/1999	1.66	<20	1200	0.07	140	93.3	65	1600
MW3	4/15/2005	0.131	6.7 J1	650	< 0.05	100	- 28.71	NA	1500
MW4	10/27/1997	5.9	<1.6	380	ND	8.2	50	NA	1530
MW4	2/4/1998	3.96	<1.6	455	ND	1100	85	NA	1580
MW4	4/6/1998	3.86	<0.5	183	ND	43.5	161	NA	1630
MW4	7/20/1998	2.75	<8	430	0	9.4	91.5	45	1640
₃ MW4	10/22/1998	0.13	<8	460	0.01	580	149.3	60	1560
MW4	1/27/1999	NS .	NS	NS	NS	NS	NS	NS	NS
MW5	10/27/1997	4.7	<0.5	183	ND	2 J	70	NA	1420
MW5	2/4/1998	1.97	<0.16	35	0.5	2200	52	NA	970
MW5	4/6/1998	2.2	0.19	22.3	ND	1330	-5	NA	724
MW5	7/20/1998	3.6	<5	50 J1	1.37	2200	11.1	60	1000
MW5	10/23/1998	0.2	<16	100J	0.18	1700	41.1	50	600
MW5	1/28/1999	1.46	<4	50	0.0	<3	49.4	36	880
MW5	4/15/2005	0.791	1.4 J1	150	< 0.05	2000	- 110.2¹	. NA	600
MW6	10/27/1997	1.95	0.63	153	ND	21	80	NA	706
MW6	2/4/1998	6.68	<1.6	170	0.8	61	43	NA	710
MW6	4/6/1998	0.38	<0.5	153	0.4	42.1	58	NA	724
MW6	7/20/1998	0.15	3	84	0.1	2500	98.2	33	760
MW6	10/22/1998	0.21	2J	120	0.04	15	163	23	1180
MW6	1/27/1999	1.74	<4	90	0.03	7.4	97.5	30	800
MW6	4/15/2005	0.11	4.7	95	0.086	5.6	- 61.7¹	NA	580

00	Dissolved Oxygen
⁻e (il)	Ferrous iron
CH4	Methane
DRP	Oxidation-reduction potential

02 Carbon dioxide Estimated value

11 Result is less than the CRDL but greater than the MDL

Bold indicates results from the most recent sampling event.

Field measurement obtained during purging

Parts per million by volume ppm mg/L milligrams per liter μg/L micrograms per liter m۷ millivolts

NS

Not sampled (well is paved over) CRDL contract required detection limit MDL

method detection limit

Table 3-5
Biosparging Soil Gas Data for Site 2296
MCB Camp Pendleton, California

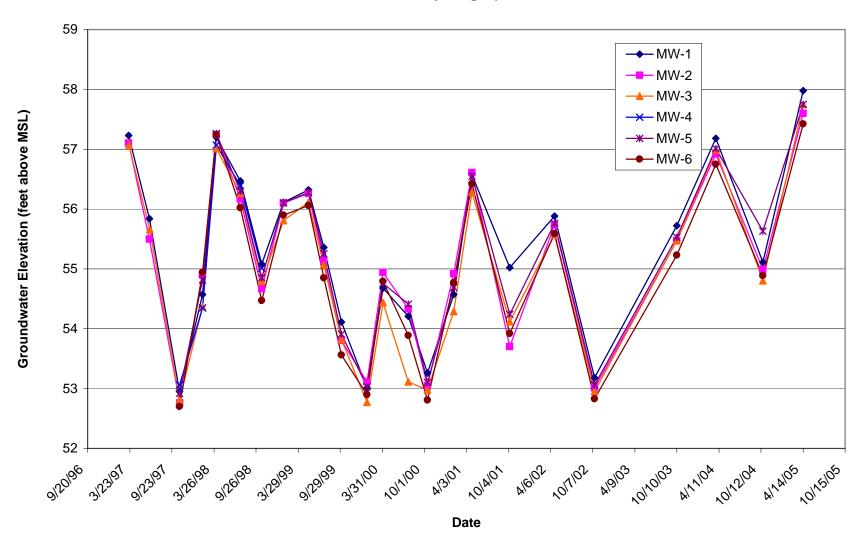
Monitoring		BSM	P-1-5		В	SMP-1-8	.5						
Location	Distance to	b BSW-1: 7	.5 ft		Distance t	o BSW-1: 7	'.5 ft		Distance t	o BSW-3&5	5: 7 ft		
	Time	O ₂	CO ₂	TVH	Time	O ₂	CO ₂	TVH	Time	O ₂	CO ₂	TVH	
DATE		(%)	(%)	(ppmv)		(%)	(%)	(ppmv)		(%)	(%)	(ppmv)	
Baseline Mo	nitoring			<u>l</u>		<u>l</u>							
03/28/01	0947	<1	8.3	732.7	-	-	-	-	1010	6.9	3.9	133.5	
System Star	tup: 03/2	28/01 10	:37										
03/28/01	1238	6.4	5.7	205.7	-	-	-	-	1227	6.0	4.4	49.8	
03/29/01	1210	<1	12.1	420.4	-	-	-	-	1119	10.5	5.0	199.8	
03/30/01	0815	10.6	3.6	95.1	-	-	-	-	0745	18.1	0.1	5.5	
04/02/01	1208	5.5	5.2	400.1	-	-	-	-	1225	16.8	2.6	63.2	
04/06/01	0955	13.3	5.2	152.6	-	-	-	-	0847	17.4	2.6	2.8	
04/11/01	1209	18.4	2.2	90.8	-	-	-	-	1311	18.4	2.4	-	
04/20/01	0827	18.6	2.6	50.6	-	-	-	-	0902	19.0	2.1	6.4	
System Shu	t-Off/Res	piration	Testing	: 04/20/0	1 09:12								
04/20/01	1014	18.9	2.6	104	-	-	-	-	1011	19.3	1.4	29.6	
04/20/01	1440	18.4	3.8	47.6	-	-	-	-	1453	18.2	2.4	12.4	
04/23/01	1349	17.4	2.5	42.7	-	-	-	-	1430	18.0	1.7	57.2	
05/02/01	1027	11.1	3.8	36.7	-	-	-	-	1115	15.1	2.2	17.8	
07/13/01	1155	<1	>5	11.1	-	-	-	-	-	-	-	-	
System Rest	tarted: 0	7/13/01											
09/24/01	1139	19.1	2.4	140	-			-	1049	20.2	0.8	80	
System Shu				ater Sam	pling Ev	ent: 9/24	1/01 11:	50					
System Rest													
System Cyc								ı					
02/26/02	0911	20.9	0.1	19.2	-	-	-	-	0928	20.9	0.4	34.5	
System Rest													
System Cycl System Res													
System Shu				ter Sam	nling Ev	ent: 03/	28/02 10	-00					
03/28/02	1015	20.7	0.4	0.0			- -	-		Covered	by truck	·	
04/04/02	1042	20.0	0.6	0.0	-	-	-	-	1048	20.2	0.6	0.0	
04/22/02	1343	13.8	2.7	-	-	-	-	-	1343	19.5	4.8	-	
05/02/02	1026	8.8	3.45	-	-	-	-	-	-	Covered by truck			
05/22/02	0838	7	0.9	0.0	-	-	1	-	0840	18.9	0.65	0.4	
05/30/02	1050	<1	1.5	0.0	-	-	•	-	1055	17.2	0.6	0.0	

Table 3-5
Biosparging Soil Gas Data for Site 2296
MCB Camp Pendleton, California

Monitoring		BSM	P-1-5		В	SMP-1-8	.5			BSMP	-2-5.5	
Location	Distance to	BSW-1: 7	.5 ft		Distance to	o BSW-1: 7	'.5 ft		Distance to	o BSW-3&5	5: 7 ft	
	Time	O ₂	CO ₂	TVH	Time	O ₂	CO ₂	TVH	Time	O ₂	CO ₂	TVH
DATE		(%)	(%)	(ppmv)		(%)	(%)	(ppmv)		(%)	(%)	(ppmv)
System Rest	tarted: 0	5/30/02	11:00									
06/24/02	1148	16.5	0.8	1.0	-	-	-	-	1150	20.6	0	0.0
System cycl	ed off: 0	6/07/02										
07/02/02	1223	11.5	1.6	0.0	-	-	-	-	1248	17.4	0.4	0.0
07/11/02	0950	5.5	2.2	0.0	-	-	-	-	0930	16.3	0.7	0.0
System cycl												
System cycl	ed off: 0		0817									
07/26/02	08:30	18.3	1.6	0.0	-	-	-	-	-	-	-	-
08/02/02	1125	15.0	2.6	-	1127	2.6	0.8	-	-	-	-	-
System cycl	ed on: 0	8/02/02	11:30									-
08/16/02	0910	18.9	1.55	-	-	•	-	-	-	-	ı	-
System cycl	ed off: 0	8/16/02	09:15									
System cycl	ed on: 0	8/22/02	07:10									
System cycl	ed off: 0	8/29/02	11:25									
09/17/02	1045	15.9	1.8	-	-	•	-	-	-	-	ı	-
09/27/02	1048	14.3	1.6	-	-	•	-	-	-	-	ı	-
10/15/02	0930	8.8	1.35	-	-	•	-	-	-	-	ı	-
10/25/02	0831	5.2	0.6	-	-	•	-	-	-	-	ı	-
10/31/02	1255	2.6	1.4	-	-	•	-	-	-	-	ı	-
System cycl	ed on: 1	1/06/02	11:00, w	ith wells	BSW-1 a	and -2						
02/10/03	1304	21.1	0.0	0.6	1306	0.0	0.3	5.6	1325	19.3	0.5	0.5
System Cycl	led Off:	02/10/03	14:20									
02/14/03	956	20.8	0.0	0.6	1023	3.0	0.3	5.2	1022	19.1	0.5	0.0
02/17/03	1158	20.2	0.0	0.4	1189	5.3	0.3	8.4		Covered	by truck	(
Soil Confirm	ation Sa	mpling:	2/19/03									
System cycl	ed on wi	th small	er blowe	er in BSW	<i>I</i> -1 and -	2: 11/25	/03 21:3	30				
System cycl	ed off 3/	19/04 at	0800									
03/26/04	-	20.4	0	-	-	-	-	-	-	-	-	-
04/16/04	-	19.5	0	-	-	-	-	-	-	-	-	-
System cycl	ed on wi	th small	er blowe	er in BSW	/-1 and -	2: 04/16	/04 0730)				
System cycl	ed off 09	/21/04										
System cycl	ed on wi	th small	er blowe	er in BSW	<i>I</i> -1 and -	2: 11/10	/04					
System off:	03/17/05	j										

Table 3-5
Biosparging Soil Gas Data for Site 2296
MCB Camp Pendleton, California

Monitoring Location	Distance to	BSM b BSW-1: 7			B Distance to	SMP-1-8 o BSW-1: 7			BSMP-2-5.5 Distance to BSW-3&5: 7 ft				
	Time	- -			Time	O ₂	CO ₂	TVH	Time	O ₂	CO ₂	TVH	
DATE		(%)	(%)	(ppmv)		(%)	(%)	(ppmv)		(%)	(%)	(ppmv)	
03/22/05	1045	20.5	0.5	-	-	-	-	-	-	-	-	-	
03/31/05	935	19.5	0.3	11.2	935	20.2	0.2	8.9	-	-	-	-	


ft = feet $O_2 = oxygen$

% = percent CO_2 = carbon dioxide

ppmv = parts per million by volume TVH = total volatile hydrocarbons

in H2O = inches of water Press = pressure

Figure 3-1 Site 2296 Hydrograph

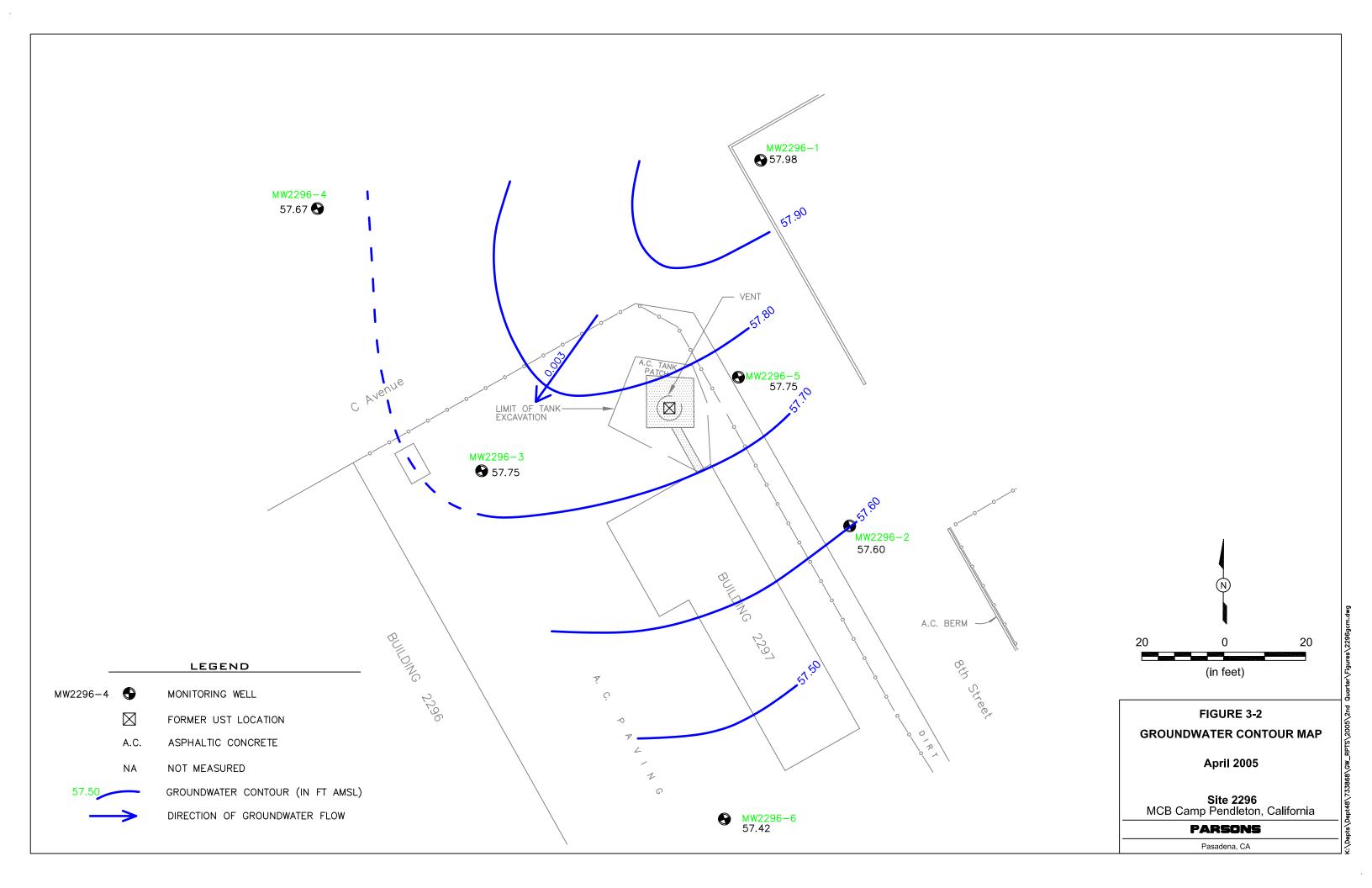
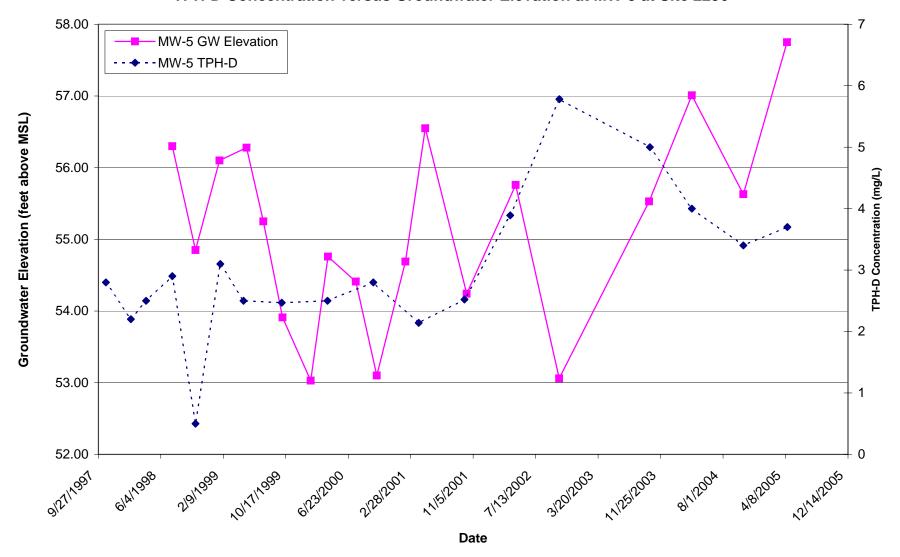



Figure 3-3
TPH-D Concentration versus Groundwater Elevation at MW-5 at Site 2296

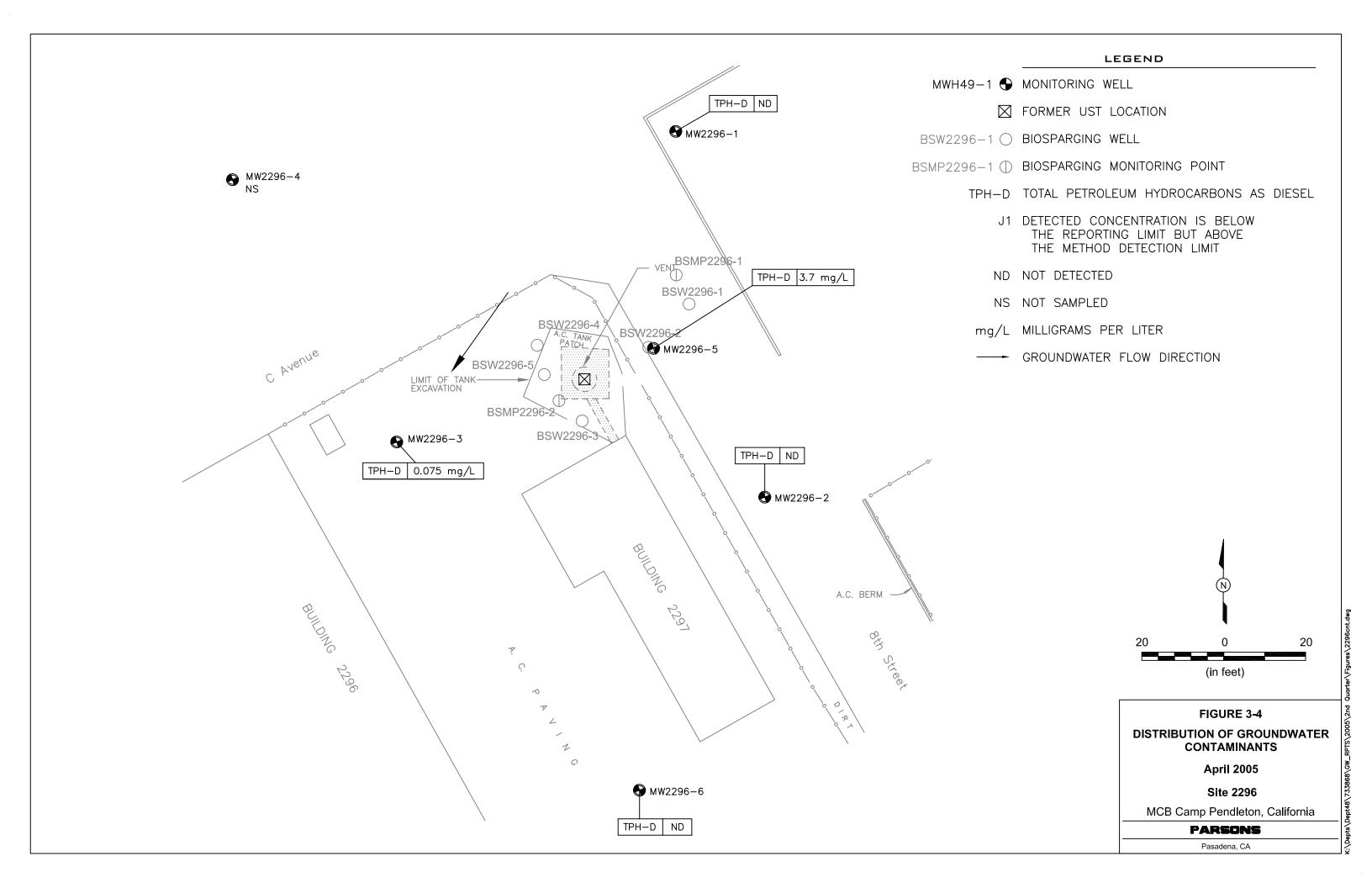
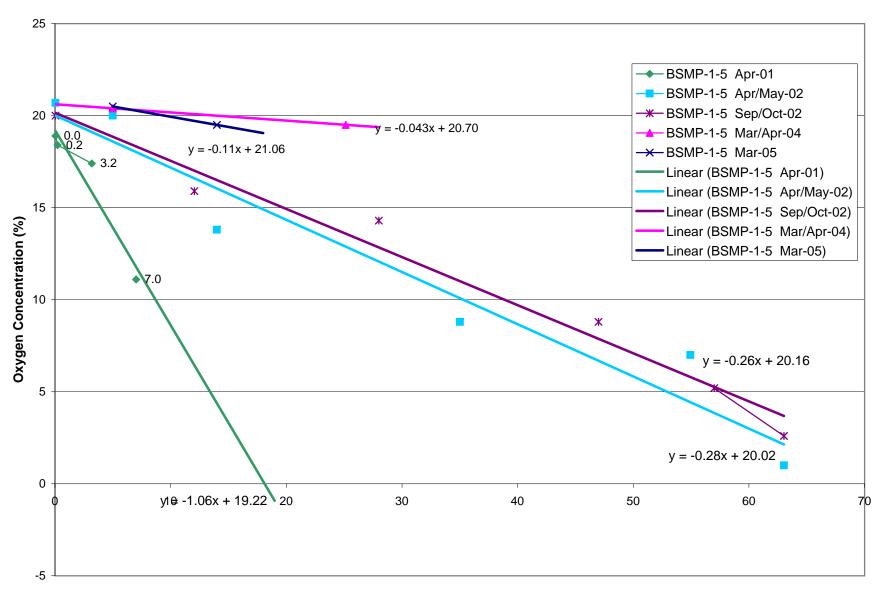
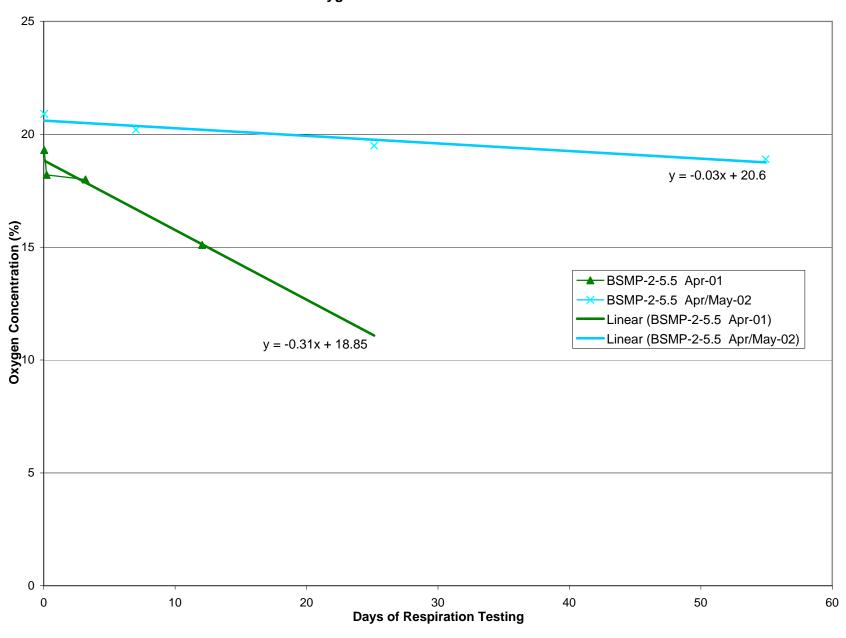




Figure 3-5
Oxygen Utilization at Site 2296 BSMP-1-5

Days of Respiration Testing

Figure 3-6
Oxygen Utilization at Site 2296 BSMP-2-5.5

SECTION 4

CONCLUSIONS AND RECOMMENDATIONS

The following section presents conclusions, recommendations and the project schedule for Site 2296.

4.1 CONCLUSIONS

The following summarizes the results for the April 2005 groundwater-monitoring event and BS operation at Site 2296.

- 1) The hydraulic gradient calculated was 0.003 southwest. This is generally consistent with the last three years of groundwater monitoring, in which the flow direction has varied from southwest to west.
- 2) TPH-D was detected above the cleanup goal in one well, MW2296-5. The concentration in MW2296-5 was generally consistent with recent events.
- 3) No SVOC were detected at the site.
- 4) The depletion of electron acceptors (nitrate and sulfate), elevated concentrations of metabolic byproducts (methane), and low redox potential within the plume strongly indicate groundwater conditions in which biodegradation of fuel hydrocarbons is occurring.
- 5) Respiration test results collected since the February 2003 confirmation soil sampling indicate that oxygen is no longer being utilized within the vadose zone at this site, suggesting that residual soil contamination has been removed.

4.2 RECOMMENDATIONS

Based on the above evaluation, site closure is requested. The following actions will be performed while awaiting site closure.

- 1) Complete the 2nd semiannual groundwater monitoring event with the BS system remaining off to confirm that the TPH-D plume is stable or decreasing after turning off the BS system.
- 2) After completion of the 1-year verification monitoring period, again evaluate the potential for no further action based on the fact that there are no primary MCLs exceeding cleanup goals, and achieving the secondary MCL for TPH-D may be impractical at the site.

SECTION 5

REFERENCES

- County of San Diego, Department of Health Services, 2002, Site Assessment and Mitigation SAM Manual.
- Leeson, Andrea, and R. E. Hinchee, 1997. *Soil Bioventing: Principles and Practice*. Lewis Publishers, Boca Raton, FL.
- OHM Remediation Services Corp., 1998, Site 2296: Groundwater Monitoring Report-Second Quarter 1998, June 1.
- Parsons, 2000a, Final Remediation Work Plan for Underground Storage Tank Site 2296, MCB Camp Pendleton, California, January 17.
- Parsons, 2000b, Response to Comments, Final Remediation Work Plans for Sites 1121, 1131, 2404, 2296, 22187, 43302, 53435, and H-49 at Marine Corps Base Camp Pendleton, California; Comments from Regional Water Quality Control Board Dated 16 May 2000, June 28.
- Parsons, 2001a, Letter Report on the Biosparging Remediation System Installation and Startup Results for Site 2296, Marine Corps Base Camp Pendleton, California, August 8.
- Parsons, 2001b, Operation & Maintenance (O&M) Manual for Bioventing and Biosparging Systems; Remediation Project: Underground Storage Tank Sites 1121, 2296, 22187, 43302, 53435, and H-49, Marine Corps Base, Camp Pendleton, California, July 3.
- Parsons, 2002, Remediation Verification Sampling Work Plan, Underground Storage Tank Site 2296, Marine Corps Base Camp Pendleton, California, October 29.
- Parsons, 2003, Remediation Verification Sampling Report, Underground Storage Tank Site 2296, Marine Corps Base Camp Pendleton, California, July 2.
- United States Environmental Projection Agency (USEPA), 2004, *How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites*, 410-R-04-002, May 1995, updated May 2004.

APPENDIX A HISTORICAL DATA

Table A-1

Historical Groundwater Elevations, Site 2296, MCB Camp Pendleton

 -		Well Head Elevation	Depth to Water	Depth to Product	Product Thickness	Corrected GV Elevation
		(feet above MSL)	(feet)	(feet)	(feet)	(feet above MSI
WELL	DATE					(Took GOOAG IATOT
MW1	3/18/97	63.63	6.40	ND		
MW1	6/17/97		7.79	ND	0.00	<i>57.</i> 23
MWI	10/27/97		10.68		0.00	<i>5</i> 5.84
MW1	2/4/98		9.06	ND	0.00	52,95
MW1	4/6/98		6.43	МD	0.00	54.57
MW2	3/18/97	64.22	7.12	ИĎ	0.00	57.20
MW2	6/17/97	01,42	8.72	ND	0.00	57.10
MW2	10/28/97		0.72	ИD	0.00	55.50
MW2	2/4/98		11.46	MD	0.00	52.76
MW2	4/6/98		9.32	ND	0.00	54.90
MW3	3/18/97	64.02	6.98	ΝD	0,00	57.24
MW3	6/16/97	04,02	6.95	ND	0.00	57.07
MW3	10/27/97		8.36	ND	0.0 0	55,66
MW3	2/4/98		11.21	ЙD	0.00	52.81
MW3	4/6/98		9.65	MD	0.00	54.37
MW4	10/27/97	63.84	7.01	ND	0.00	57.01
MW4	2/4/98	03.04	10,78	_ ND	0.00	53.06
MW4	4/6/98		9.49	ND	0.00	54.35
MW5	10/27/97	64.10	6.77	ND	0.00	57.07
MW5	2/4/98	04-10	11.18	ND	0.00	52.92
MW5	4/6/98		9.28	ND	0.00	54.82
MW6	10/27/97	64.07	6.84	ND	0.00	57.26
MW6	2/4/98	64.07	11.37	МD	0.00	52.70
MW6	<u>4/6/98</u>		9.13	ND	0.00	54.94
planation:	<u> </u>		6.83	ND	0.00	57.24

Table A-2

Historical Hydrocarbons in Groundwater, Site 2296, MCB Camp Pendleton

	CON	STITUENT:	TPH-D	TPH-M	Benzene	Toluene	Ethylbenzen	Xylenes
	<u> </u>	METHOD:	M8015 LUFT	M8015 LUFT	EPA-8020	EPA-8020	EPA-8020	EPA-8020
		, UNITS:	mg/L	mg/L	μg/L			GF X-6020
WELL	SAMPLE	DATE	-0		h&r.	μg/L	μg/L	μg/Ľ
BI-GW1		6/21/95	26				•	
B2-GWI		6/21/95	26	NA	<0.5	<0.5	<0.5	<1.5
B3-GW1		6/21/95	8	NA	⊴0 .5	<0.5	<0.5	<1.5
B4-GW1		6/27/95	Q C	NA	<0.5	<0.5	<0.5	<1.5 <1.5
B5-GWI		8/31/95	⊘ 3	NA	⊲0 .5	<0.5	<0.5 -	<1.5
B6-GW1		8/31/95	<u>ک</u>	NA	<0.5	<0.5	<0.5	<1.5
B7-GW1		8/31/95	₹	` NA	<0.5	<0.5	<0.5	<1.5
B8-GW1		8/31/95	0.97	NA	کر⊳	<0.5	<0.5	<1.5
B9-GWI		9/1/95	0.87	NA.	<0.5	<0.5	<0.5	<1.5
B10-GW1		9/1/95	<2	NA	<0.5	<0.5	<0.5	<1.5
HPI	028	2/27/97	5.4 B	NA NA	<0.5	<0.5	<0.5	20<1.
HP2	024	2/27/97	70 B	NA NA	<0.5	<0.5	<0.5	40.5
HP3	019	2/27/97	<0.5	NA NA	<5	<5	<5	25 J
HP1	43 3	10/15/97	0.6	0.3 J	≪0.5	⊲ 0.5	<0.5 .	<0.5
HP2	438	10/17/97	0.7	0.3 J	< 0.5	<0.5	<0.5	<1.5
TP3	437	10/17/97	0.6	0.3 J	<0.5 <0.5	<0.5	<0.5	<1.5
MW1		9/20/95	<0.5	NA	√ 0.5 ⋖ 0.5	. <0.5	<0.5	<1.5
(WI	042	3/19/97	<0.5	NA	₹0.5	⊴ 0.5	<0.5	<1.5
MW1	385	6/20/97	<0.5	<0.5	₹0.5	<0.5 <0.5	<0.5	<1.5
(WI	441	10/27/97	<0.5	⊲0 .5	₹0.5	<0.5 <0.5	<0.5	<1.5
√W1	442	10/27/97	<0.5	·<0.5	₹0.5	<0.5 <0.5	<0.5	<1.5
MW1 MW1	507	2/4/98	<0.5	<0.5	<0.5	√ 0.5	<0.5	<1.5
√W2	574	4/6/98	<0.5	<0.5	₹0.5	₹0.5	⊴0. 5	<1.5
4W2	042	9/20/95	<0.5	NA	⊲0. 5	1.4	<0.5	<1.5
/W2	043 .	3/19/97	<0.5	NA	⊲0 .5	<0.5	<0.5 <0.5	<1.5
AW2	383 443	6/20/97	⋖ 0.5	<0. 5.	<0.5	حَ0َّے	40. 5	<1.5
∕IW2	508	10/27/97	<0.5 ′	<0.5	<0.5	₹0.5	₹0.5	<1.5
ÆW2	57 5	2/4/98	<0.5	<0.5	<0.5	<0.5	<0.5	<1.5
AW3	3/3	4/6/98	<0.5	<0.5	⊲0 .5	<0.5	₹0.5	<1.5
AW3	041	9 /20/ 95 3/19/9 7	<0.5	NA	<0.5	5.6	<0.5 ⋅	<1.5
£W 3	379	6/18/97	< 0.5	NA	<0.5	<0.5	<0.5	<1.5
ſW3	444	10/27/97	⊲0.5	40. 2	<0.5	. ⊲0. 5	<0.5	<1.5 <1.5
ſ ₩3	509	2/4/98	< 0.5	₹0.5	⊴ 0.5	<0.5	<0.5	<1.5
TW 3	576	4/6/98	<0.5 <0.5	<0.5	⊴0. 5	<0.5	<0.5	<1.5
IW4	·435	10/15/97	0.6	<0.5	⊴0.5	<0.5	<0.5	<1.5
IW4	440	10/27/97	₹ 0.5	0.3)	⊴0.5	<0.5	<0.5	<1.5
ſW4	510	2/4/98	₹0.5	<0.5 <0.5	⊴ 0.5	<0.5	<0.5	<1.5
IW4	577	4/6/98	₹0.5	<0.5 <0.5	< 0.5	<0.5	<0. 5	4.5
TW5	432	10/15/97	0.7	0.3 J	⊲ 0.5	<0.5	<0.5	0.7 J
TW5	445	10/27/97	2.8	0.3 1 <0.5	< 0.5	⊴ 0.5	<0.5	<1.5
TW 5	511	2/4/98	2.2	₹0.5	40. 5 ⊲0 .5	<0.5	<0.5	<1.5
ſW5	578	4/6/98	2.51	₹0.5	93.1 0.3.1	⊴ 0.5	4.4	7.4
ſW6	434	10/15/97	2.8	0.5	⊴ 0.5	0.6	1.3	3.3
TW6	446	10/27/97	₹0.5	√0. 5	40.5 40.5	⊲ 0.5	<0.5	<1.5
IW6	514	2/4/98	₹0.5	<0.5	40.5	< 0.5	<0. 5 ·	<1.5
CW6	515	2/4/98	₹0.5	₹0. 5	₹0.5	< 0.5	<0.5	<1.5
TW6	581	4/6/98	₹0.5	₹0.5	< 0.5 <	<0.5 <0.5	<0.5	<1.5
W6 (dupe	582	4/6/98	₹0.5	₹0.5	<0.5 <0.5	< 0.5	<0.5	0.6 J
xplanation	: iated value				~,,,	<0.5	<0.5	<1.5

M8015E = Modified Method 8015 - Extractables

M8013E = Modified Method 8013 - Extractables
mg/L = milligrams per liter
NA = Not analyzed
TPH-D = Total Petroleum Hydrocarbons as Diesel
TPH-M = Total Petroleum Hydrocarbons as Motor Oil
µg/L = micrograms per liter

Mixture of jet fuel and diesel

Table A-3

Historical Bioremediation Activity Indicators (Lab Measurements), Site 2296, MCB Camp Pendleton

<u> </u>	CONST	ITUENT:	Alk	Ammonia	Nitrate	Nitrite	TKN	Phos	PH	Sulfate	Fe	Methane	Sulfide
	M	ETHOD:	310.1	350.2	300.0	300,0	351.3	300.0	9040	300.0	7380	GC/FID	376.2
		UNITS:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pH unit	mg/L	mg/L	μg/L	mg/L
WELL		DATE											
SAMPLE	028	2/26/97	NA	NA	<0.04	<0.05	17.4	NA	7.48	NA.	NA	1260	<0.2
HP2	024	2/26/97	ÑA	NA	0.07	<0.05	15.6	ŇĀ	7.38	ŇÁ	ÑĀ	150	<0.2
HP3	019	2/26/97	NA	NA	12,8	<0.05	4,5	NA	7,24	NA	NA	3	<0.2
MW1	042	3/19/97	1920	NA	<0.2	< 0.25	1.0	NA	7.44	544	0.115	109	<0.2
MWl	385	6/20/97	1990	NA	<2	<2.5	1.0	<5	7.25	610	3.4 J	144	<0.2
MWl	441	10/27/97	1980	NA	<1.6	<2	1.4	<4	NA	495	<0.1	141	NA
MW1	507	2/4/98	1950	NA	<2	<2.5	NA	<5	NA	500	0.216	180	NA
MW1	574	4/6/98	1910	NA	<3.2	<4	NA	<8	NA	630	0.0784	43.8	NA
MW2	043	3/19/97	635	NA	<0.04	<0.05	1	NA	7.13	162	0.130	10	<0.2
MW2	383	6/20/97	728	NA	0.44	<05	0.44	<1	7.06	176	2.8	20.9	<0.2
MW2	443	10/27/97	799	ŅA	<0.4	<0.5	0.62	<1	NA	147	<0.1	33	NA
MW2	508	2/4/98	209	ŅA	0.37	<0.1	ŅĀ	<0.2	ŅĄ	16	0.676	<3	NA
MW2 MW3	575	4/6/98	659 1310	ŅĄ	<0.4	<0.5	NΑ	<u><1</u>	NA	172	0.282	11.2	NA
MW3	041 379	3/19/97 6/18/97	1320	NA 0.48	<0.2	<0.25	0.7	NA	7.35	600	0.212	407	<0.2
MW3	444	10/27/97	1230	NA	₹2	<2.5 <2.5	0,66 1.1	<5 <5	7.44 NA	646 589	2.6	540	<0.2
MW3	509	2/4/98	1270	NA NA	₹2	<2.5	ŇÄ	<5	NA NA	582	<0.1 0.269	284 630	NA NA
MW3	576	4/6/98	1270	NA	<3.2	<4	NA	<8	NA	700	0.0927	3.83	NA
MW4	440	10/27/97	1530	NA	<i< td=""><td><1.3</td><td>0.87</td><td><2.5</td><td>ÑA</td><td>419</td><td><0.1</td><td>8.2</td><td>NA</td></i<>	<1.3	0.87	<2.5	ÑA	419	<0.1	8.2	NA
MW4	510	2/4/98	1580	· NA	<1.6	<2	NA	<4 .	NA	380	0.0808	1100	NA
MW4	577	4/6/98	1630	NA	<1.6	<2	NA	<4	NA	455	0.0234 J	43.5	NA
MW5	445	10/27/97	1420	NA	<0.5	< 0.63	2.0	<1.25	NA	183	0.24	2 J	NA
MW5	511	2/4/98	970	ŅĄ	<0.16	<0.2	NA	<0.4	ŊĄ	35	0.814	2200	NA
MW5	578	4/6/98	724	ŅĄ	0.19	<0.05	ŅĀ	0.1	NA	22.3	0.964	1330	NA
MW6	446	10/27/97	706	ŊĄ	0.63	<0.5	1.6	<1.0	ŅА	153	0.10	21	NA
MW6 MW6 .	514 581	2/4/98 4/6/98	710 724	NA NA	<1.6 <0.5	<2	NA	<4	NA	170	0.723	62	ŊĄ
Explanati		4/0/98	/ 24	TAY.	<u> </u>	<0.63	NA_	<1.3	NA	153	0.721	42,1	. NA

Explanation:

Alk = Alkalinity

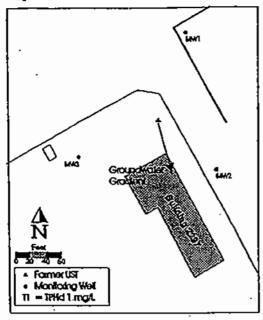
Alk = Alkaunity
Fe = Iron
GC/FID = Gas Chromatograph/Flame Ionization Detector
J = Estimated value
mg/L = milligrams per liter
NA = Not Analyzed
Phos = Phosphate
TKN = Total Kjeldahl Nitrogen

 $\mu g/L = micrograms per liter$

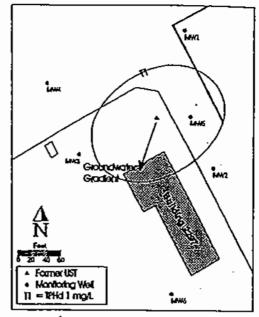
Table A-4 Historical Bioremediation Activity Indicators (Field Measurements), Site 2296 MCB Camp Pendleton

	CONSTITUENT:	Dissolved O2	Redox (Orion)	Redox (ORP)	Ferrous Iron	. Sulfide
	UNITS:	mg/L	mV	mV	mg/L	mg/L
WELL	DATE				-	·
IWM	6/17/97	NA	NA	NA	NA	<0.2
MWI	10/27/07	3.70	155	30	ND	ND
MWI	2/4/98	1.40	NA	78	ND	ND
MW1	4/6/98	2.68	NA	136	NM	NM
MW2	6/17/97	NA	NA	ŇĂ	ŇÄ	<0.2
MW2	10/27/97	1.90	85	80	ND	ND
MW2	2/4/98	1.82	NA	67	ND	ND
MW2	4/6/98	NA	NA	127	ND	ND
MW3	6/17/97	NA	NA	NA	ŇĂ	<0.2
MW3	10/27/97	3.50	270	60	ND	ND
MW3	2/4/98	0.62	NA	67	ND	ND
MW3	4/6/98	0.56	NA	126	0.01	ND
MW4	10/27/97	5,90	173,6	50	ND	ND
MW4	2/4/98	3.96	NA	85	ND	ND
MW4	4/6/98	3,86	NA	161	ND	ND
MW5	10/27/97	4.70	50	70	ND	ND
MW5	2/4/98	1.97	NA	52	0.5	ND
MW5	4/6/98	2,20	NA	-5	ND	ND
MW6	10/27/97	1.95	60	80	ND	ND
MW6	2/4/98	6.68	NA	43	0.8	ND
MW6.	4/6/98	0.38	NA	58	0.4	NĎ

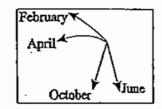
Explanation:

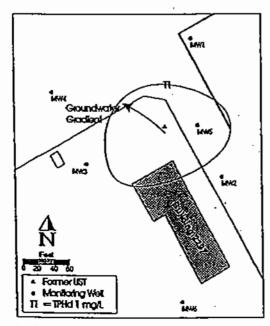

mg/L = milligrams per liter

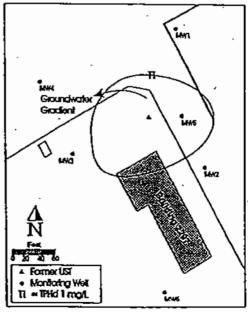
mV = millivolts


NA = Not analyzed

NM = Not measured


Figure A-1 Historical Groundwater Gradient and Contaminant Distribution at Site 2296.




October 1997

Interpreted Groundwater Flow Direction

February 1998

April 1998

Table 16 Hydrocarbons in Soil at Site 2296 MCB Camp Pendleton

			B1	B1	B1	,B1	B1	B1	B2	B2	B2	B2	В3
Depth (feet bgs)		· ·	.6	7.5	12	15	17.5	20	6	12	15	20	6
Date			6/21/95	6/21/95	6/21/95	6/21/95	6/21/95	6/21/95	-6/21/95	6/21/95	6/21/95	6/21/95	6/21/95
CONSTITUENT	METHOD	UNITS							•	•			
TPH-D	M8015E	mg/kg	<10	<10	190	<10	<10	<10	<10	480	<10	<10	<10
трн-м	M8015E	mg/kg	-	-	· 18	-	-	-	-	58	-	•	-
TRPH	418.1	mg/kg	-	-	-		-	-	-	-	•	-	
Benzene	LUFT-8020	μ g/kg	-	-	<0.1	-	-			<0.5	-	-	-
Toluene	LUFT-8020	μg/kg	-	-	<0.1	-	-	•	-	<0.5			-
Ethylbenzene	LUFT-8020	μg/kg	-	-	<0.1	-	-		-	<0.5	-	-	
O-Xylenes	LUFT-8020	μg/kg	-	•	<0.1	-	-	-		<0.15	-	-	-
SPLP TPH-D	M8015E	mg/L	-	-	-	-		•	-	-	-	-	-
SPLP TPH-M	M8015E	mg/L	-	-	-	-	-	-			-	-	-
SPLP Benzene	LUFT-8020	μg/L	-	•	-	-	-	-	-	-	-		-
SPLP Toluene	LUFT-8020	μg/L	-	•	-	•	-	-	-	-		-	•
SPLP Ethylbenzene	LUFT-8020	μg/L	-	•	•	-	-	_		-	•	-	-
SPLP Xylenes	LUFT-8020	μg/L			-	-	-	-	-		-	-	-

Table 16 Hydrocarbons in Soil at Site 2296 MCB Camp Pendleton

			В3	B3	B3	В3	B4	B4	B4	B4	B4	B 4	B5
Depth (feet bgs)			10	12	15	20	6	7.5	12.5	15	20	25	5
Date			6/21/95	6/21/95	6/21/95	6/21/95	6/26/95	6/26/95	6/26/95	6/26/95	6/26/95	6/26/95	8/30/95
CONSTITUENT	METHOD	UNITS	٠,							,			
TPH-D	M8015E	mg/kg	530	360	31	<10	<10	<10	1000	<10	<10	<10	<10
трн-м	M8015E	mg/kg	53	•	. •	-		-	380	-	-	-	
TRPH	418.1	mg/kg	-	-	•	-	-	-	-	•	-	-	
Benzene	LUFT-8020	μg/kg	<0.5	-	-	-	-	-	<1	-	-	-	-
Toluene	LUFT-8020	μ g/ kg	<0.5		•		-	-	<1	-		-	
Ethylbenzene	LUFT-8020	μg/kg	<0.5	-	-		-	~	<1	-			-
O-Xylenes	LUFT-8020	μg/kg	<0.15	-	•			-	<1.3	-	-		-
SPLP TPH-D	M8015E	mg/L	-		•		-	-	•		-	-	-
SPLP TPH-M	M8015B	mg/L	-	-	•	-	-	-	-	-	-	-	
SPLP Benzene	LUFT-8020	μg/L	-	-	-	-	-			-	-	-	-
SPLP Toluene	LUFT-8020	μg/L	-	-	-		-	-	-		-	-	-
SPLP Ethylbenzene	LUFT-8020	μg/L			-	-	•	-	-	-			
SPLP Xylenes	LUFT-8020	μg/L	-	•		-	-	-		-			_

Table 16 Hydrocarbons in Soil at Site 2296 MCB Camp Pendleton

			B5	B5	B 5	B5	B5	В6	В6	В6	В6	В6	В7
Depth (feet bgs)	···		7.5	10	12.5	15	20	5	7.5	10	12.5	15	5
Date			8/30/95	8/30/95	8/30/95	8/30/95	8/30/95	8/31/95	8/31/95	8/31/95	8/31/95	8/31/95	8/31/95
CONSTITUENT	METHOD	UNITS								1			
TPH-D	M8015E	mg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
трн-м	M8015B	mg/kg		-	•	-		_	-	-	-	-	-
TRPH	418.1	mg/kg	-	•	-	•	•	-	•	-	-	•	
Benzene	LUFT-8020	μg/kg	•	-	•	•	i -	-	-	-		-	-
Toluene	LUFT-8020	μ g/kg	•	-		-	•		-	-		-	•
Ethylbenzene	LUFT-8020	μg/kg	•	•	-		-	-	-	-	-		
O-Xylenes	LUFT-8020	μg/kg	-	-	-	-	-	-		-	•	-	_
SPLP TPH-D	M8015E	mg/L		•	-	•	-	-	-	-	-	-	-
SPLP TPH-M	M8015E	mg/L	-	•	-	•	-	-	-	-	•	-	-
SPLP Benzene	LUFT-8020	μg/L	-	-	-	•	-	-	-	-	•	-	-
SPLP Toluene	LUFT-8020	μg/L	-	•	-	• -	-	-		•		-	-
SPLP Ethylbenzene	LUFT-8020	μg/L	-	•	-	-	-	-	-	_	-	-	-
SPLP Xylenes	LUFT-8020	μg/L,	-	-	•	-	-		•	-	-	-	-

Table 16 Hydrocarbons in Soil at Site 2296 MCB Camp Pendleton

			B7	B7	B7	B7	В7	B8	В8	В8	B8	B8	В8
Depth (feet bgs)	···		7.5	10	12.5	15	20	5	7.5	10	12.5	15	20
Date			8/31/95	8/31/95	8/31/95	8/31/95	8/31/95	8/31/95	8/31/95	8/31/95	8/31/95	8/31/95	8/31/95
CONSTITUENT	METHOD	UNITS											
TPH-D	M8015B	mg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
ТРН-М	M8015B	mg/kg	-	-		•	•			-		-	
TRPH	418.1	mg/kg	-	-	-	-	-		-	-	-		
Benzene	LUFT-8020	μg/kg	-	-	-	•	-	-	-	-	-	-	-
Toluene	LUFT-8020	μg/kg	-	-	-			-	-	-	-	-	
Ethylbenzene	LUFT-8020	μg/kg	-	-	-	-		-			-		
O-Xylenes	LUFT-8020	μg/kg	-	-		-	-	-		-	-	-	
SPLP TPH-D	M8015E	mg/L	-	-	-	-	-		-	-	-		-
SPLP TPH-M	M8015E	mg/L	-	-	-	-	-	-	-	-	-	-	-
SPLP Benzene	LUFT-8020	μg/L	•	-	-	-	-				-	-	-
SPLP Toluene	LUFT-8020	μg/L	-		-		•	-	-	•		•	-
SPLP Ethylbenzene	LUFT-8020	μg/L	-		-	-	-	-	-	-	-	-	-
SPLP Xylenes	LUFT-8020	μg/L			-	-	-	-		-		-	-

Table 16 Hydrocarbons in Soil at Site 2296 MCB Camp Pendleton

			В9	В9	В9	B9	В9	. B9	B10	B10	B10	B10	B10
Depth (feet bgs)			5	7.5	10	12.5	15	20	5	7.5	10	12.5	15
Date			9/1/95	9/1/95	9/1/95	9/1/95	9/1/95	9/1/95	9/1/95	9/1/95	9/1/95	9/1/95	9/1/95
CONSTITUENT	METHOD	UNITS								1			
TPH-D	M8015E	mg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
трн-м	M8015E	mg/kg	-	-		-	-	-	-	-	-	-	-
TRPH	418.1	mg/kg	-	-	-	-	-	-	-	-	-		
Benzene	LUFT-8020	μg/kg	-	-	-	-		-	-	-	-		-
Тоіцепе	LUFT-8020	μg/kg		-	-	-	-		-	-	•		
Ethylbenzene	LUFT-8020	μg/kg	•	-	-	-					-	-	-
O-Xylenes	LUFT-8020	μg/kg	-	•	-	-	_	-	-	-		-	-
SPLP TPH-D	M8015E	mg/L		•	-	•	-	-	-	-	-		-
SPLP TPH-M	M8015B	mg/L	•	•	-	•	-		-		-	-	
SPLP Benzene	LUFT-8020	μg/L	-	-	-	-	-	-	-	-	•		-
SPLP Toluene	LUFT-8020	μg/L	-	-	-	·-	-	-	-	-	-	-	-
SPLP Ethylbenzene	LUFT-8020	μg/L	•	•	-		-		-	-		-	-
SPLP Xylenes	LUFT-8020	μg/L		-	•		-		-		-		

Table 16 Hydrocarbons in Soil at Site 2296 MCB Camp Pendleton

			B10	RB1-027	RB1-029	RB1-030	RB2-023	RB2-025	RB2-026	RB3-018	RB3-020
Depth (feet bgs)			20	8	12	17	8	12	17	8	12
Date			9/1/95	2/26/97	2/26/97	2/26/97	2/26/97 -	2/26/97	2/26/97	2/26/97	2/26/97
CONSTITUENT	METHOD	UNITS							•		
TPH-D	M8015B	mg/kg	<10	<12	315 B	<13	<12	1100 B	<13	<13	585 B
трн-м	M8015E	mg/kg	-		•	-			-	-	-
TRPH	418.1	mg/kg	-	-	-		-	-			-
Benzene	LUFT-8020	μg/kg		_	<13		•	<13		-	<13
Toluene	LUFT-8020	μg/kg	-	-	59	-	-	20		-	<13
Ethylbenzene	LUFT-8020	μg/kg	-		91	-	•	45			120
O-Xylenes	LUFT-8020	μ g/ kg		•	725	-	_	365	-	-	250
SPLP TPH-D	M8015E	mg/L	-	-	<0.5	-	-	0.8	•		<0.5
SPLP TPH-M	M8015E	mg/L		•	-	-	•	-	•	-	-
SPLP Benzene	LUFT-8020	μg/L	-	-	<0.5	-	•	<0.5	-	•	<0.5
SPLP Toluene	LUFT-8020	μg/L	-	•	<0.5		-	<0.5	-	-	<0.5
SPLP Ethylbenzene	LUFT-8020	μg/L	-	•	<0.5	-	-	<0.5	-	-	<0.5
SPLP Xylenes	LUFT-8020	μg/L		•	<1.5	4	•	<1.5	•	-	<1.5

Table 16 Hydrocarbons in Soil at Site 2296 MCB Camp Pendleton

			RB3-021
Depth (feet bgs)	v v		17
Date			2/26/97
CONSTITUENT	METHOD	UNITS	
TPH-D	M8015E	mg/kg	<13
ТРН-М	M8015E	mg/kg	-
TRPH	418.1	mg/kg	-
Benzene	LUFT-8020	μg/kg	-
Toluene	LUFT-8020	μg/kg	-
Ethylbenzene	LUFT-8020	μg/kg	-
O-Xylenes	LUFT-8020	μg/kg	-
SPLP TPH-D	M8015B	mg/L	-
SPLP TPH-M	M8015E	mg/L	-
SPLP Benzene	LUFT-8020	μg/L	-
SPLP Toluene	LUFT-8020	μg/L	
SPLP Ethylbenzene	LUFT-8020	μg/L	
SPLP Xylenes	LUFT-8020	μg/L	-

Notes:

bgs: below ground surface

B: Mixture of JP-5 and diesel.

J : Estimated value.

LUFT: Leaking Underground Fuel Tank

M8015E: Modified Method 8015

- Extractables

mg/Kg: milligrams per Kilogram

mg/L: milligrams per Liter

SPLP: Synthetic Precipitation Leaching

Procedure

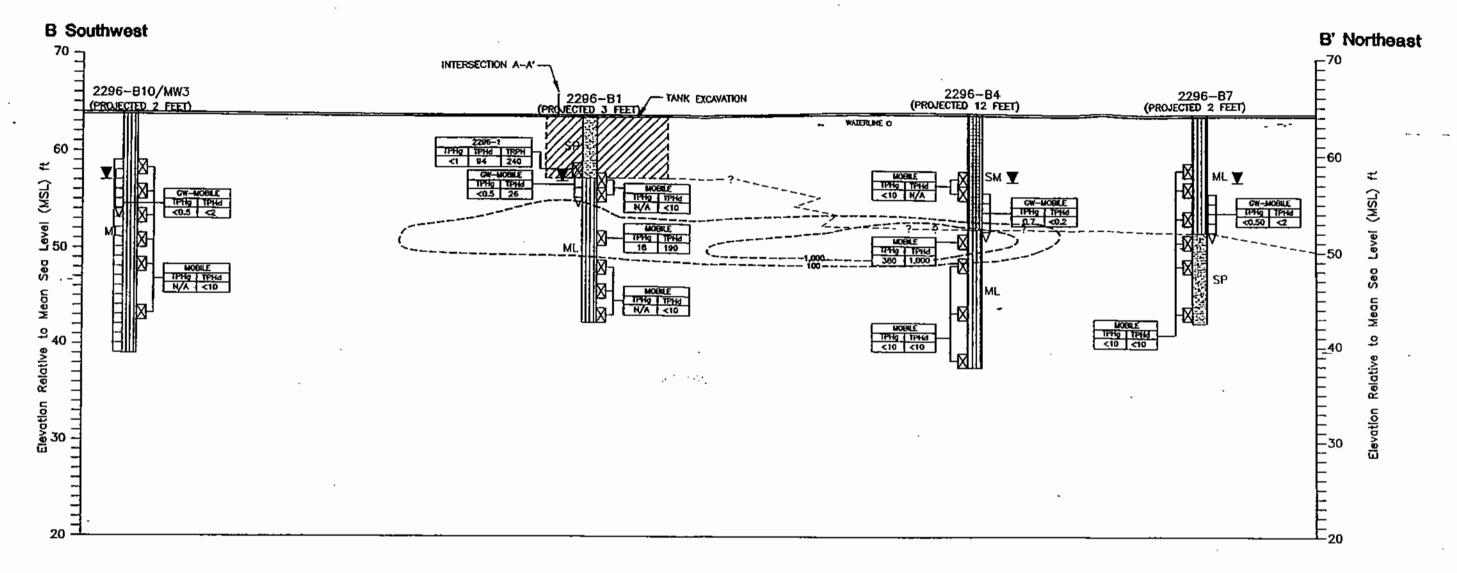
TPH-D: Total Petroleum

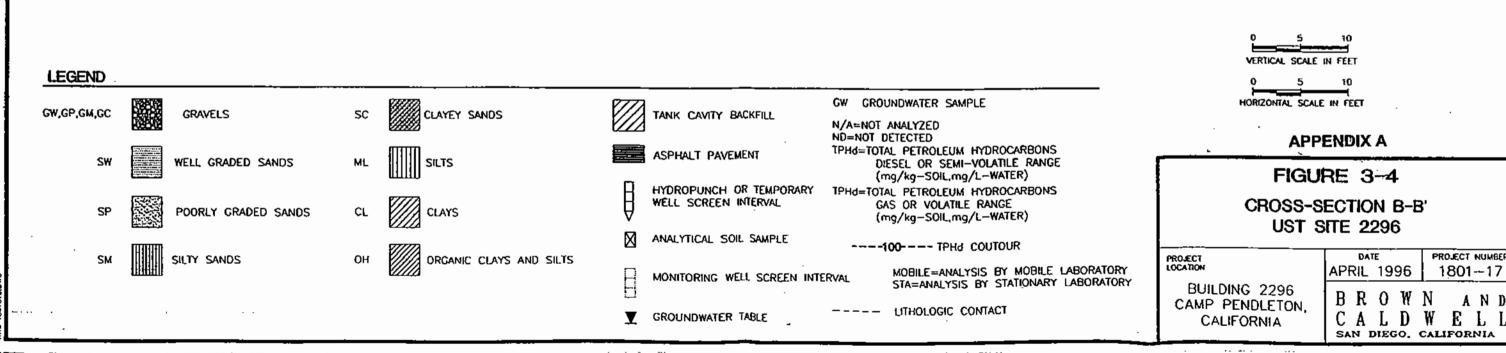
Hydrocarbons as Diesel

TPH-M: Total Petroleum

Hydrocarbons as Motor Oil

TRPH: Total Recoverable

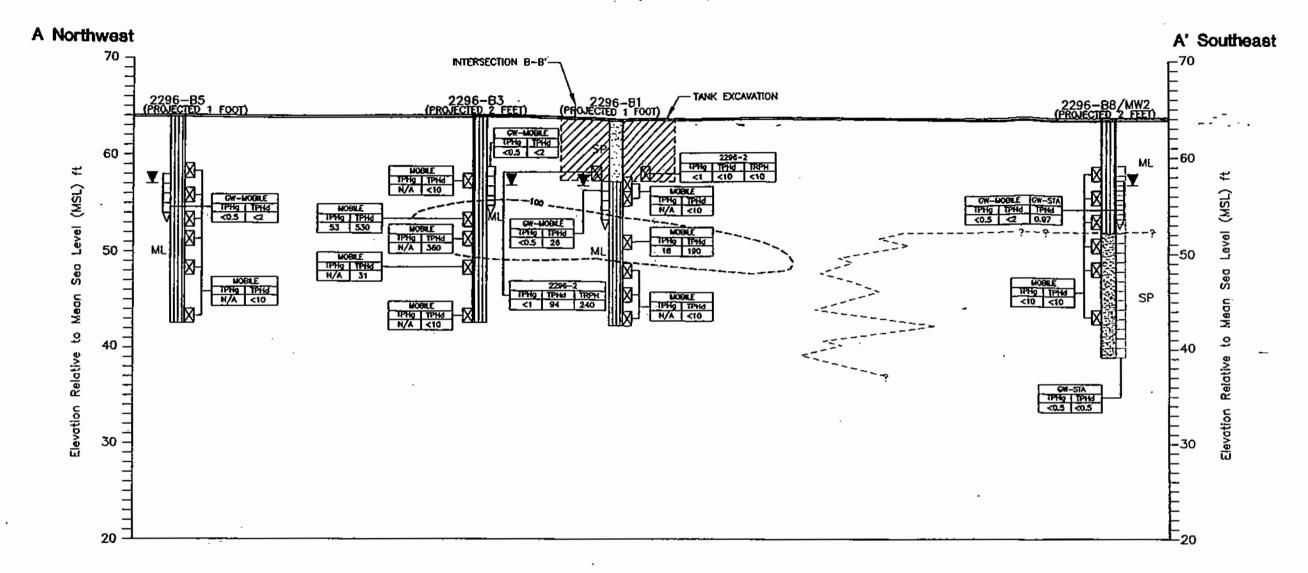

Petroleum Hydrocarbons

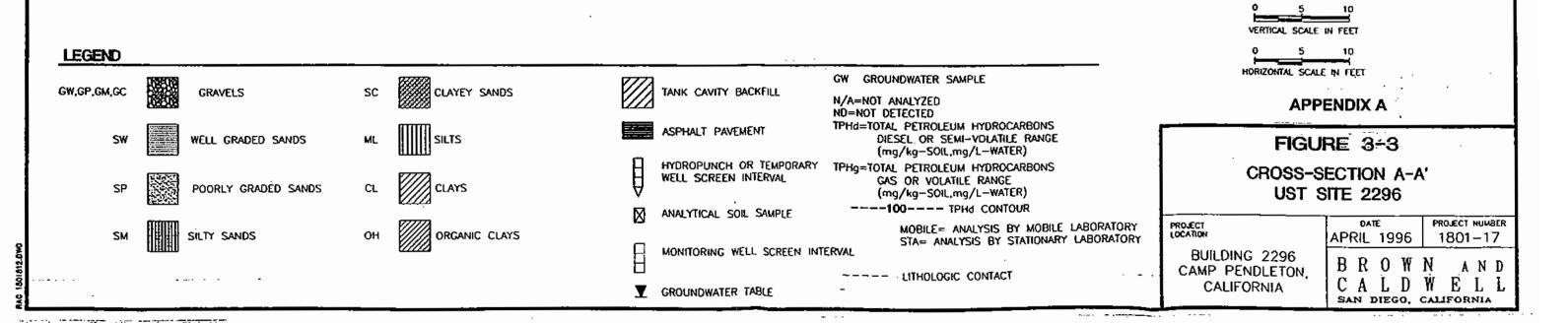

μg/Kg: micrograms per Kilogram

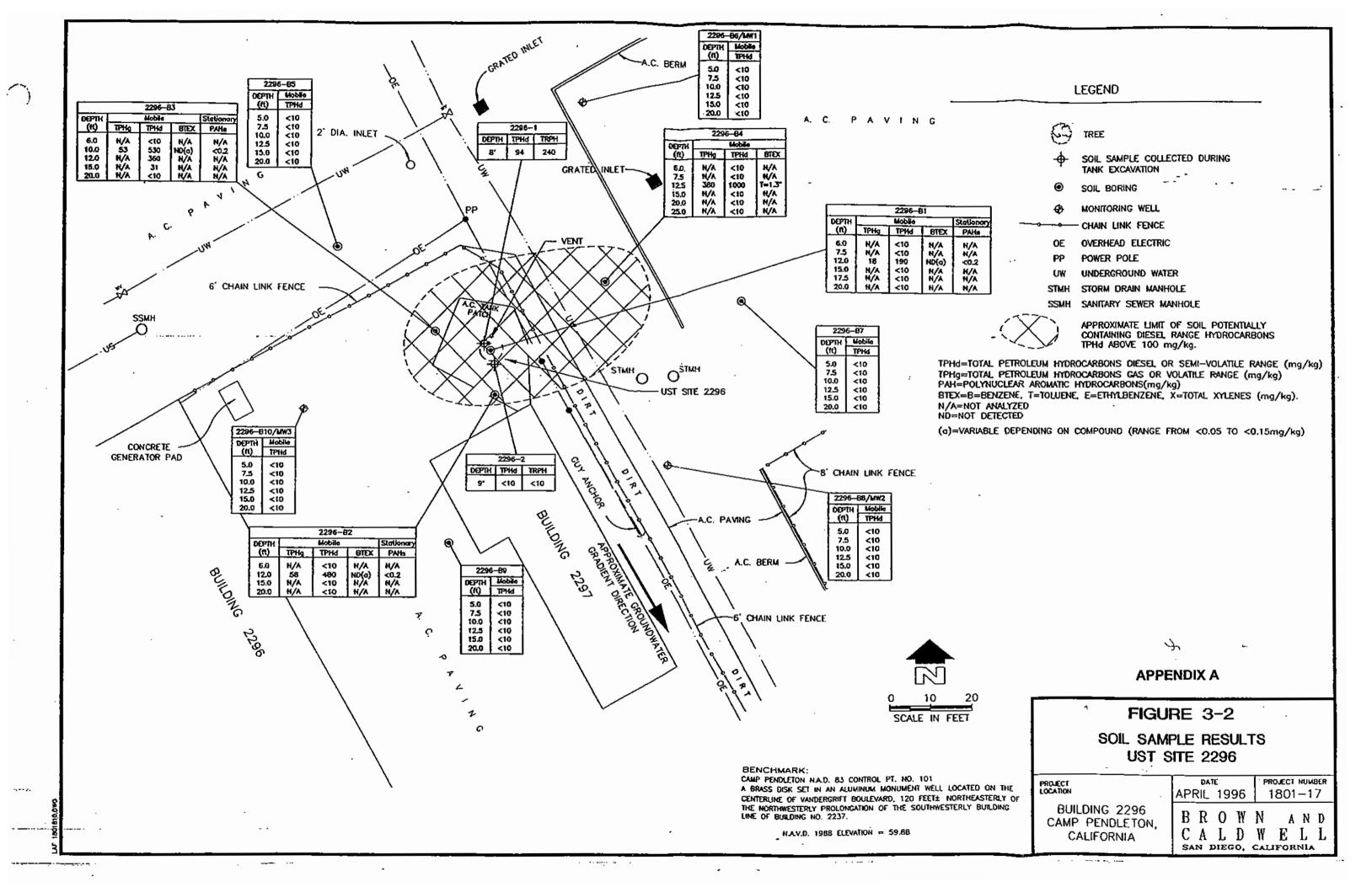
μg/L: micrograms per Liter

"-": Not Analyzed

CROSS-SECTION B-B' (View Looking Northwest)






PROJECT NUMBER

1801--17

CROSS-SECTION A-A' (View Looking Northeast)

APPENDIX B GROUNDWATER SAMPLING SHEETS AND WASTE MANIFESTS

WELL GAUGING DATA

Project # 05041-01 Date 4/14/05	Client Porsons @ Complexited
---------------------------------	------------------------------

Site Area 2296

Well ID	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)		Volume of Immiscibles Removed (ml)	Depth to water	Depth to well bottom (ft.)	Survey Point: TOB or TOC	*
529P.1	4					5.65	24.35	TOC	X
2296-2	#					6.62	25,32		メ
MUS 2296-3	4					5.65 6.62 6.27	25.05		
2012 12 20 20 20 20 20 20 20 20 20 20 20 20 20	4			_		6.17 6.35 6.65	21.12		Х
2296.5	#					6.35	20.40		۲
2296-6	4					6.65	19.94	4	-
			. ,						-
							-		
				-					
,									
								_	;
	-	-		-					
							·		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

t= Gauged With Stinge in Well

WELL MONITORING DATA SHEET													
Project #: 05041-01	Client: Parsons @ Camp Pendleton BAA												
Sampler:	Start Date: 4/15/05												
Well I.D.: MW2296-1	Well Diameter: 2 3 @ 6 8												
Total Well Depth: 24,35	Depth to Water Pre: 5,65 Post: 23,82												
Depth to Free Product:	Thickness of Free Product (feet):												
Referenced to: (FV) Grade	Flow Cell Type: YST 556												
Purge Method: 2" Gundles Pump Sampling Method: Dedicated Tubing Flow Rate: 2 CPM	Peristaltic Pump Disposable Bailes Other Pump Depth: 231												
$\frac{12.2 \text{ (Gals.) } \times 3}{\text{Gals.}} = 36$	Well Diameter Multiplier Well Diameter Multiplier												
Temp. Cond. Time or of ph (mS or 68)	Turbidity D.O. ORP Water Removed (NTUs) (mg/L) (mV) (gal). or mL) Observations												
754 Start Purgo													
756 2298 7.55 2470	T												
758 22.53 7.54 2321	6 0.91 -40.9 8												
800 22,46 7,50 2435	5 0.65428 12												
802 24.52 7.52 2590	7 0.68 -44,0 16												
804 22.68 7.53 2991	6 0.30 -448 20												
806 23.18 7.45 4737	6 0.29 -49 24												
809 23.64 7.40 5330	6 0.30 -48.8 2830												
813 23.67 7.41 5420	4 0.31 -49,1 37												
Did well dewater? Yes	Amount actually evacuated: 37												
Sampling Time: 1805 Sampling	Date: 415 05 Depth to Water: 5,95												
Sample I.D.: MW 2296-1-040													
Analyzed for: TPH-G BTEX MT	TBE TEHD Other: See SOW												
Equipment Blank I.D.: @ Time	Duplicate I.D.:												

Project #:	0500	H1-0)		Client:	Parsons	@ Cam	p Pendlet	on BAA						
Sampler:	0	·		Start Date	:4/15/	3 5								
Well I.D.	MWZZ	16-2		Well Dian	neter: 2	3 4	6 8							
	ll Depth: 2		2_	Depth to V	Water	Pre: 6	62 P	ost: 6.83						
Depth to	Free Produ	ıct:		Thickness	Thickness of Free Product (feet):									
Reference	ed to:	₽vc	Grade	Flow Cell	Type:Y	SI 551	<u> </u>							
Purge Metho Sampling M Flow Rate:		2" Gundi Dedicated	-		Peristaltic l <u>Oisposable</u> Pump Dept	Bailer	Bladder Po Ot	10.36 her						
12.2 Gals.	_(Gals.) X	3	= 31	5,6	Well Diameter I" 2" 3"	0.04 0.16 0.37	Well Diameter 4" 6" Other	Multiplier 0.65 1.47 radius ² * 0.163						
Time	Temp.	pН	Cond. (mS or 🖎)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Remov	l l						
822	<	2.4 <u>√</u>	4 !	DUS	<u> </u>									
824	23.28	7.19	3006	72	0.13	-26.2	<u>'}</u>							
826	23.30	7.20	3002	H	0.14	-26.5	4							
828	23.29	7.20	2998	14	0.15	26.7	12							
830	23,32	7.19	2992	10	0.15	-27.3	16							
832	Z3,38	7.19	2983	10	0111	21.3	20							
836	23,40	7:18	5381	7	3,10	-31.1	28							
838	23,40	7.18	2982	4	0,10	-32,2	32							
148	23,41	7.18	2980	3	010	-33.3	37							
Did well	dewater?	Yes (₽Ġ		Amount	actually e	vacuated:	37						
Sampling	Time: 🎸	46	Sampling	Date: 4	15/05	Depth to	Water:	3.83						
Sample I.	D.: MW	2296	-2-0105	5	Laborato	ory: APC	الم							
Analyzed	for:	TPH-G	BTEX MT	ве тенф		Other:	Sees	jià						
Equipme	nt Blank I.	D.:	@ Time		Duplicat		<u> </u>							

Project #:	650°	H1-QX		Client:	Parsons	@ Cam	p Pendleton	BAA					
Sampler:			-	Start Date:	415	05							
Well I.D.	:MWZZ	16-3		Well Dian	neter: 2	3 4	6 8						
	ll Depth: 7			Depth to V	Depth to Water Pre: (2.27 Post: 21.8)								
	Free Produ			Thickness	Thickness of Free Product (feet):								
Reference	ed to:	PV	Grade	Flow Cell	Type:	Y	515%						
Purge Metho Sampling M Flow Rate:		2" Grundfo Dedicated			Peristaltic I Disposable Pump Dept	Bailer	Bladder Pump Other	10.02					
12,2 Gals.	(Gals.) X	3_	= 3	6.b	Well Diameter J* 2" 3"	Multiplier 0.04 0.16 0.37	4" 0. 6" 1.	ultinlier .65 .47 adius ² * 0.163					
Time	Temp.	pН	Cond. (mS of \muS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Observations					
900	<u> </u>	star?	PI	2502									
902	22.03	7.21	6313	5	0.53	-30.0	4						
904	21,97	7022	6297	3	14.0	-28.1	8						
907	21.91	7.22	6241	3.	0.43	-22.9	14						
910	21.78	7.21	6171	2	0.22	-15.2	20						
913	22.20	7.19	6508	10	0.16	-27.5	26						
915	22.2)	7.18	6520	7	0.14	-27.9	30						
917	2231	7.17	bboz	4	0.13	-28.2	34						
918	22,34	7.17	6615	4	0.13	-28.7	37						
Did well	dewater?	Yes	®		Amount	actually e	vacuated: 3	7					
Sampling	g Time: (ار کا(Sampling	Date: 45	05	Depth to	Water: 7,	60					
Sample I	.D.: Mw 7	296-	3-0405	2	Laborato	ry: ДР С							
Analyzed	l for:	TPH-G	BTEX MT	BE TOPO		Other: \le	se sol	J					
Equipme	nt Blank I.	.D.:	@ Time		Duplicate I.D.:								

Project #:	050	41-0		Client:	Parsons	@ Cam	p Pendleto	n BAA						
Sampler:	Ø			Start Date	: 4/15/	05								
Well I.D.	MW22	96.5		Well Dian	neter: 2	3 4	6 8 _							
1	ll Depth:		>	Depth to \	Depth to Water Pre: 6.35 Post: 12/7									
Depth to	Free Produ	ıct:		Thickness	Thickness of Free Product (feet):									
Reference	ed to:	Py	Grade	Flow Cell	Type: Y	5I 55 <i>l</i>	,							
Purge Metho Sampling M Flow Rate:	ethod:	2" Gundfo Dedicated	-	(Peristaltic F Disposable Pump Deptl	Bailer>		er						
Gals.	_(Gals.) X	3	_ =	1.3	Well Diameter 1" 2" 3"	Multiplier 0.04 0.16 0.37	Well Diameter 4" 6" Other	Multiplier 0.65 1.47 radius ² * 0.163						
Time	Temp.	pH	Cond.	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Remove (gas. or mL)							
950		200	7 Purs	<u>e</u> -	0.24									
952	21,46	7.42	1545	36 0	フェラ	-43.2	4							
954	21.38	7.47	1534	22	0.15	-72.4	8							
955	21,34	7.47	1550	20	0.13	-74cl	10							
957	21,49	7,32	1490	16	0.21	105.6	14	<u> </u>						
959	21.57	7,35	1705	8	0.79	-110.2	18	Well denoticed						
Did well	dewater? (Y#S	No		Amount	actually e	vacuated:	18						
Sampling	Time:	<u>55</u>	Sampling	Date: 415	105	Depth to	Water: 9	15						
Sample I.	D.: 1	2296	-5-a	405	Laborato	ry: AP	2							
Analyzed	for:	ТРН-G	BTEX MT	BE TEND		Other:	See Son	, PNAS						
Equipme	nt Blank I.	D.:	@ Time		Duplicate	e I.D.:								

WELL MONITORING DATA SHEET											
Project#: 050411-CD	Client: Parsons @ Camp Pendleton BAA										
Sampler:	Start Date: 41505										
Well I.D.: My2296-6-0405	Well Diameter: 2 3 @ 6 8										
Total Well Depth: 19,94	Depth to Water Pre: 6.65 Post: 7.10										
Depth to Free Product:	Thickness of Free Product (feet):										
Referenced to: Pvd Grade	Flow Cell Type: YSL 556										
Purge Method: 2" Grandfos Pump Sampling Method: Dedicated Tubing Flow Rate: Z GM	Peristaltic Pump Disposable Bailer Pump Depth: Well Diameter Multiplier Well Diameter Multiplier										
$\frac{\text{Gals.}}{\text{Gals.}} \times \frac{\text{Gals.}}{\text{Gals.}} = \frac{25}{25}$											
Temp. Cond. Time (F) or F) pH (mS or (18)	Turbidity D.O. ORP Water Removed (NTUs) (mg/L) (mV) (gate. or mL) Observations										
921 - Start Dur	 										
924 22,34 7.16 251	76 0.12 -30.4 6										
9726 22.34 7.17 2517	6 0.11 -38.4 10										
928 22.34 7.16 2459	5 0.10 47.2 14										
930 22.34 7.17 2419	3 0.11 -57.3 18										
932 22.32 7.16 2396	3 0.10 191.3 22										
934 \$22307.17 2351	2 0.10 -61.7 26										
Did well dewater? Yes (No	Amount actually evacuated: 24										
Sampling Time: 940 Sampling	Date: 415 09 Depth to Water: 7,10										
Sample I.D.: MV2296-6-0409	Elaboratory: APCL										
Analyzed for: TPH-G BTEX MT	TBE (PH) Other: See 50W										
Equipment Blank I.D.:	Duplicate I.D.:										

OT AINI	=	1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1106					CONDUCT ANALYSIS TO DETECT								APCL COC of					
BLAINI ECH SERVICE			SAN	1 JOSE,		E) 573-7771			Ą	!		§0 7 2			62 100 W Walnut Ave.	26) 44 0 -4001	D Fax: (626	3) 440-6200		
HAIN OF CUSTODY							1		Ferrous Iron, Alkelmity		7	28		٠	Pasadena CA 9112	4				
LIENT	Parsons										20	7			job# 933868	PO# 04	1000			
SITE	Camp	Pendl	eton A	rea 2	2 - Site 22	96			Ferrou		82	MIR			Disposal by APCL QC requirement: AFC	·cc				
T0607301596									itrale,	•	~	2			do requisition. At o	L				
			MATRIX	1	CONTA	INERS	TPH-D		Sulfate, Natrale,	RSK175 Methane	کم	1			,		1	1		
SAMPLE 1 D.	DATE	TIME	AQ =	*-	Preservation	Туре	8015		300	RSK175	AN A	[3			ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE		
MA2296-1-0405	415/09	1005	AQ	5	North	N.P. V	K		X	人										
1602296-2-0405		846					X		X	X	L.	\perp	\perp							
10 2296-3-045		101R		1			X		X	X	<u>_</u>		_	_						
MU12296.2-045	5-845 NS5 K X		H 1065 1 L X X X X X		X		_				<u> </u>									
41002296-6-0405		940	_ 4 _	7 6	.	4	X		χ	λ			_ 4				ļ			
13 03 040	4/10/03	100-	DA.	2	HG-	40)	-		_			×	-+-	-(D					
									_											
SAMPLING COMPLETED 4	DATE	TIME \00	SAMPLI PERFOR		Y	Chris Dav	is								RESULTS NEEDED NO LATER THAN	Standard 7	TAT			
RELEASED 6Y	~4/2°	tan	جند						TIME	29	∕ ()■		VED BY	/	O Stine	· · ·	DATE	71ME 5 /240		
RELEASED BY	2	ferm		مسد					TIME /-/ TIME	.0	<u></u>		VED BY			_	DATE DATE	TIME		
SHIPPED VIA									TIME	SENT		COOL	R #		,		_			

_	NON-HAZARDOUS WASTE MANIFEST		0,0,2,3,5,3	3 1007um		2. Page af .	1	_		
ı	 Grand'station and d'eligatives env P.O. Box 555006 	ironmental Secu	irity	Att Chuc	K Devide					
Ì	Camp Pendleton CA 92055	5617				CA 1	7384			i
	A Concident Thetio		6. US EFA	D Number			sporter's f	16444		
1 6	LIGHT DOTATION TO THE LINE TO		CADSS	0,3,0,	1,7,3	<u> </u>		310	320-2565	i
Ιį	7. Transporter 2 Company Name		ſ	O Number		B. Tran	spartor's P	,poua		
$\ \ $	Designated Pacility Name and Site Address CROSBY & OVERTON		10. US EPA	D Number		C. Faci	lity's Phon	•		
$\left \cdot \right $	1630 W, 17TH STREET LONG BEACH CA 90813		CAD 0.2.8	4.0.9.	0_1,9	<u> </u>		562	432-5445	
	11. Waste Shipping Name and Description						12. Con	Type	13. Total Quantity	14. Unit Wt/Val
	Non Hazardous Waste, Liquid (Ground)	v at er)						1,7,2,3	Gunny	171/ 401
	-						0. 0. 1	T.T	1.000	9 G
မှု	ь.									Ţ
N E							<u>.</u>		<u>. 1</u>	<u> </u>
GENERATOR	с.	,								1
ıŀ			<u> </u>					<u> </u>		
	d.									
	D. Additional Descriptions for Materials Listed Ab					E. Kan	dling Code	ns for We	rates Listed Abov	<u> </u>
П	(L) Profiled 08627					1	-			•
					•		,	15		
	15. Special Handling Instructions and Additional 24 Hour Ethnergency # 1-800	niormation)-321-5479				I		<u> </u>		
		1 733868								
	,									
	16, GENERATOR'S CERTIFICATION: 1 confly the	motoriois elevational ab	NOVO on this monthes	not whise o		gulation i	or reportion	niores d	Second of Maranda	it Worte
Į.	Protect Typed Name	HINDERSON WAS CLIPPED OF	Signature	- In mideri (- 1000191 10	, i	त्र जानमणास	Thinker o	Month Do	
1	17. Trdnsporter 1 Acknowledgement of Receipt of	Matérials	1110	DRO 1	الك	كالمذ	∞	<u> </u>	<u> </u>	(0)
THE PROPERTY	Grinted/Typed Name	161	Signature	71	1/2			-	Month, Do	'/ · · · · · · · · · · · · · · · · · · ·
Š	18. Transporter 2 Acknowledgement of Receipt of	Materials	-Au	Long	10	70			10.411.	<u> </u>
Ŧ	Printed/Typed Name		Signoture			_			Month Po	y Yeon
·H	19. Discrepancy Indication Space									
F										
ç	00 F 71 C				· -		- 10	<u>.</u>		
FACILITY	20. Facility Owner or Operator: Certification of re	eerbi oi waxie wax	engls covered by this	madaet exc	ept as nat	eq (f) 11ên	n 17.			
Y	Printed/Ivpad North		Significa	. /	Len				Month Do	7 Year
- 44	100 ~1/ mpg		190	- XX	pro.					0 40

NO.025 P.3/4

Ecology Control Industries

Salve Pros

中国ので TRANSPORTATION SERVICE ORDER

A FULL SERVICE ENVIRONMENTAL COMPANY

SERVICE ORDER #

288324 5069

				DATE: 04/18	<u> </u>									
Name: RA	Son	کي مر (1 1NE	RING Job Locati	on: Our	P PZN	Diang	log DC	COUN	Some				
Address (BILLII	NG):			Clty:			Zip:_							
Ordered by:		<u>√</u>		Company:	<u>. </u>		P.O.	#						
Name (PRINT):	<u>r-090</u>	of (b)	<u> 21 </u>	Company: Signed:	Adre f	2 Os	elin	<u> </u>						
Truck #: 220	08	u . Trailer #:		Size/Type:	V Tous	de								
				CAMP D.			W D	CRA	Y <u>L</u> .	<u></u>				
				DeRe						fal				
				of Go		11	_	•						
13 -	_	_		d trave		/ .	//		,					
~ -				Couple				1 1 1	0 C C	_				
,	1	ygs		CALLE.	<u> </u>	- jc	ex.c.s	70 , 7 .		<u>1</u>				
	24 (-4	735	<u>~ 9</u>											
MANIFEST #:			DISPOSAL #	ŧ	Start PM Stop: PM Gross Time: Hrs.									
#		#		<u> </u>	→									
#		#	-		MEALS:AM Stop;AM Less;Hrs.									
#Fooda:)ty:		_				v					
881:	Gal:	то	ons:	Yards;	Other Time: HrsHrs.									
Time In:		Tin	ne In		Time in:		Si	on Miles						
TIME 11.			,,, <u>, , , , , , , , , , , , , , , , , </u>		Time In:Stop Miles:									
Time Out		Tin	ne Out		Miles Driven:									
	QTY.	U.O.M.	RATE	EXT.	-	QTY.	U.O.M.	RATE	y o∑ EX					
Vacuum Truck	8_	ļ	65	520,00	Disposal				$ \sim$	70.ec				
End Dump		<u> </u>	<u></u>		Washoul			2/1	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	<u></u>				
Roll-off					Roper Pump				7 73	<u> </u>				
Flat Bed					Bin Liner	_	<u> </u>	(%)						
Tank Mover					Surcharge				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7//				
Driver Relief														
Subsistence														
				<u>h</u>			ļ							
		<u></u>	21	1										
Authorized & Aj		7	MA		FONS Tive: 650.			TOTAL \$						
If invoice is not p	paid withir	n 30 days, id	nterest šhal	l commence accruir	ng at 1.5% per m	onth. Shoul	ld suit be d	ommenced	to collect a	ny portion				

of this invoice, Ecology Control Industries shall be entitled to any costs deemed reasonable by the court, including attorney fees,

APPENDIX C LABORATORY REPORTS

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to:

Parsons Engineering Science Attention: Cindy Zicker 100 W. Walnut Street Pasadena CA 91124

Tel: (626)585-6000 Fax: (626)440-6200

APCL Analytical Report

Service ID #: 801-052336

Collected by: CD

Collected on: 04/15/05

Received: 04/15/05

Extracted: 04/19-20/05 Tested: 04/15-26/05

Reported: 04/28/05

Sample Description: Water from Area 22-Site 2296

Project Description: Camp Pendleton

Analysis of Water Samples

				Analysis Result					
Component Analyzed	Method	Unit	PQL	MDL	MW2296-1-0405 05-02336-1	MW2296-2-0405 05-02336-2			
ALKALINITY	310.1	mg/L	2	0.93	1,800	300			
Dilution Factor					100	20			
NITRATE AS N	300.0	mg/L	0.06	0.020	3.6J	2.2			
SULFATE	300.0	mg/L	0.5	0.16	300	75			
Dilution Factor					1	1			
IRON (II)	SM3500DFE-	mg/L	0.05	0.012	0.074	< 0.05			
Dilution Factor					0.96	0.96			
DIESEL	M8015E	mg/L	0.1	0.013	< 0.096	0.033J			
Dilution Factor					1	1			
METHANE	RSK175	$\mu \mathrm{g}/\mathrm{L}$	3	0.55	17	13			

						Analysis Result	
Component Analyzed	Method	Unit	PQL	MDL	MW2296-3-0405 05-02336-3	MW2296-5-0405 05-02336-4	MW2296-6-0405 05-02336-5
ALKALINITY	310.1	mg/L	2	0.93	1,500	600	580
Dilution Factor					200	50	20
NITRATE AS N	300.0	mg/L	0.06	0.020	6.7J	1.4 J	4.7
SULFATE	300.0	mg/L	0.5	0.16	650	150	95
Dilution Factor					1	1	1
IRON (II)	SM3S00DFE-	mg/L	0.05	0.012	< 0.05	< 0.05	0.086
Dilution Factor					0.96	0.96	0.96
DIESEL	M8015E	mg/L	0.1	0,013	0.075J	3.7	< 0.096
Dilution Factor					5	100	1
METHANE	RSK175	$\mu g/L$	3	0.55	100	2,000	5.6

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1440 D004 N 05-2336 h Page: 1 of 2

13760 Magnolia Ave., Chino, CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	MDL	Analysis Result MW2296-5-0405 05-02336-4
SEMI-VOC, 64 COMPOUNDS	··				· · · · · · · · · · · · · · · · · · ·
Dilution Factor					10
ACENAPHTHENE	SW8270C	μg/L	10	1.5	< 100
ACENAPHTHYLENE	SW8270C	$\mu g/L$	10	1.6	< 100
ANTHRACENE	SW8270C	$\mu g/L$	LO	1.5	< 100
BENZ(A)ANTHRACENE	SW8270C	$\mu g/L$	10	1.5	< 100
BENZO(A)PYRENE	SW8270C	$\mu \mathrm{g/L}$	10	1.2	< 100
BENZO(B)FLUORANTHENE	SW8270C	$\mu \mathrm{g/L}$	10	1.9	< 100
BENZO(G,H,I)PERYLENE	SW8270C	μ g/L	10	1.2	< 100
BENZO(K)FLUORANTHENE	SW8270C	$\mu { m g/L}$	10	1.5	< 100
CHRYSENE	SW8270C	μg/L	10	1.4	< 100
DIBENZ(A,H)ANTHRACENE	SW8270C	$\mu g/L$	10	1.2	< 100
FLUORANTHENE	SW8270C	$\mu g/L$	10	1.6	< 100
FLUORENE	SW8270C	$\mu g/L$	ro	2.0	< 100
INDENO(1,2,3-CD)PYRENE	SW8270C	$\mu g/L$	10	1.1	< 100
2-METHYLNAPIITHALENE	SW8270C	$\mu g/L$	10	2.0	< 100
NAPHTHALENE	SW8270C	$\mu g/L$	10	2.0	< 100
PHENANTHRENE	SW8270C	μg/L	10	1.7	< 100
PYRENE	SW8270C	ղ8/ւ	10	0,68	< 100

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitted,

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NELAP No.:02114CA CI-1440 D004 N 05-2336 4 Page: 2 of 2

J: Reported between PQL and MDL.

D. A.N.	_				1680 ROGE	RS AVENUE		CONDI	JCT A	NALY	'SIS T	O DET	ECT		LAB	APCL CO	c of)
BLAIN TECH SERVICE		† •	SAN	I JOSE,	FAX (4)	(95112-1105 08) 673-7771 08) 673-0555						8092			Parsons (6 C. Zicker 100 W Walnut Ave	326) 440-4000) 440-6200
CHAIN OF CUSTODY							1		Alkalinity		7	8			Pasadena CA 911	24		
CLIENT	Parso	ons					1		Ferrous Iron,		70				job# 933868	PO# 04	1000	
SITE			eton A	геа 22	2 - Site 2:	296	1		Ferrou		82				Disposal by APCL QC requirement: AF	CEE		
Global ID		730159					٠			ľ		-W-	.		QC requirement : Ar	CEE		
	 I	 	MATRIX		CONT	AINERS	TPH-D		Sulfate, Nitrate,	RSK175 Methane	PNPS	/					1	
SAMPLE I.D.	DATE	TIME	AQ = H2O	*	Preservation	Туре	8015		300	RSK17	4				ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE#
MA2296-1-0405	415/05	1005	AQ.	5	NONE	N.P.V	X		X	人								
MW2296-2-0405	1 1	846	1			1	X	l '	X	X					23	9 8 _		·
MD 2296. 3-065		1018		1			X		X	X					~ 0	-	ļ	·
<u> </u>		1055		b .			X		<u>X</u>	K	又							
MUZZ96-6-0405	_+	940	4	5 6	a		X		X	X				_				·
113 05 04B	4/15/05	100 -	AQ	2	HÖ	10K	_	 				×			\mathcal{D}			
														_				
SAMPLING COMPLETED	DATE	TIME	SAMPLI PERFO		Y	Chris Dav	 /is	<u> </u>							RESULTS NEEDED NO LATER THAN	Standard ²	 TAT	
RELEASED BY	~ M S	Dan	15					Τ	ME 12	24	⊘	RECE		2	D fline		DATE 4-15-0	TIME 5 1240
RELEASED BY	<u></u>	D				•		•	IME 144	00	_	RECE	NED I	340-7)	•	DATE UTAS	TIME (707)
RELEASED BY	6	process.						Ţ	MÉ		•	RECE	₩EO E	ΒÝ			DATE	TIME
SHIPPED VIA								<u> </u>	ME S	ENT		COOL	ER#			•		

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Sample Receiving Checklist

•	. Sample Arrival
	Date/Time Received 41505 1700 Date/Time Opened 41505 1700 By (name) Jaconn
	Custody Transfer: 🗆 Client 🗆 Golden State 🗆 UPS 🗀 US Mail 🗔 FedEx 💢 APCL Empl;
2	Chain-of-Custody (CoC)
	With Samples?
3	3. Shipping Container/Cooler
	Cooler Used? # of Cooled by: \(\sqrt{Coole}\) Cooled by: \(\sqrt{Cooler}\) Cooled by: \(
	(Cooler temperature measured from temp blank if present, otherwise measured from the cooler). Cooler Custody Seal? Absent Intact Tampered?
4	1. Sample Preservation
	☐ pH <2 ☐ pH >12 If Not, pH = Preserved by: ☐ Client ☐ APCL ☐ Third Party
5	5. Holding-time Requirements
£	6. Holding-time Requirements pH 24hr BACT 6/24hr Cr ^{VI} 24hr NO ₃ 48hr BOD 48hr CI ₂ ASAP Turbidity 48hr DO ASAP Fe(II) ASAP
	☐ pH 24hr ☐ BACT 6/24hr ☐ Cr ^{VI} 24hr ☐ NO ₃ 48hr ☐ BOD 48hr ☐ Cl ₂ ASAP ☐ Turbidity 48hr ☐ DO ASAP ☐ Fe(II) ASAP
	☐ pH 24hr ☐ BACT 6/24hr ☐ Cr ^{VI} 24hr ☐ NO ₃ 48hr ☐ BOD 48hr ☐ CI ₂ ASAP ☐ Turbidity 48hr ☐ DO ASAP ☐ Fe(II) ASAP ☐ HT Expired? ☐ Client notified?
	□ pH 24hr □ BACT 6/24hr □ Cr ^{VI} 24hr □ NO ₃ 48hr □ BOD 48hr □ Cl ₂ ASAP □ Turbidity 48hr □ DO ASAP □ Fe(II) ASAP □ HT Expired? □ Client notified? 5. Sample Container Condition □ □ □ □ □ Anomalies Documented? Type: □ plastic □ Sglass □ Tube: brass/SS □ Tedlar Bag
	□ pH 24hr □ BACT 6/24hr □ Cr ^{VI} 24hr □ NO ₃ 48hr □ BOD 48hr □ Cl ₂ ASAP □ Turbidity 48hr □ DO ASAP □ Fe(II) ASAP □ HT Expired? □ Client notified? 3. Sample Container Condition □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	□ pH 24hr □ BACT 6/24hr □ Cr ^{VI} 24hr □ NO ₃ 48hr □ BOD 48hr □ Cl ₂ ASAP □ Turbidity 48hr □ DO ASAP □ Fe(II) ASAP □ HT Expired? □ Client notified? 5. Sample Container Condition □ □ □ □ □ Anomalies Documented? Type: □ plastic □ Sglass □ Tube: brass/SS □ Tedlar Bag
€	□ pH 24hr □ BACT 6/24hr □ Cr ^{VI} 24hr □ NO ₃ 48hr □ BOD 48hr □ Cl ₂ ASAP □ Turbidity 48hr □ DO ASAP □ Fe(II) ASAP □ HT Expired? □ Client notified? 5. Sample Container Condition □ Anomalies Documented? Type: □ plastic □ glass □ Tube: brass/SS □ Tedlar Bag □ Quantity OK? □ Leaking? □ Appropriate for specific method? □ Caps tight? □ Air Bubbles? □ Adequate Volume? Labels: □ Unique ID? □ Date/Time □ Label and ink intact?
€	□ pH 24hr □ BACT 6/24hr □ Cr ^{VI} 24hr □ NO ₃ 48hr □ BOD 48hr □ Cl ₂ ASAP □ Turbidity 48hr □ DO ASAP □ Fe(II) ASAP □ HT Expired? □ Client notified? 3. Sample Container Condition □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
•	□ pH 24hr □ BACT 6/24hr □ CrVI 24hr □ NO₃ 48hr □ BOD 48hr □ Cl₂ ASAP □ Turbidity 48hr □ DO ASAP □ Fe(II) ASAP □ HT Expired? □ Client notified? 3. Sample Container Condition □ Anomalies Documented? Type: □ plastic □ Galass □ Tube: brass/SS □ Tedlar Bag □ Quantity OK? □ Leaking? □ Appropriate for specific method? □ Caps tight? □ Air Bubbles? □ Adequate Volume? Labels: □ Unique ID? □ Date/Time □ Label and ink intact? 7. Turn Around Time □ Std (7-10 days) □ Not Marked
7	□ pH 24hr □ BACT 6/24hr □ Cr ^{VI} 24hr □ NO ₃ 48hr □ BOD 48hr □ Cl ₂ ASAP □ Turbidity 48hr □ DO ASAP □ Fe(II) ASAP □ HT Expired? □ Client notified? 3. Sample Container Condition □ Anomalies Documented? Type: □ plastic □ Sglass □ Tube: brass/SS □ Tedlar Bag □ Quantity OK? □ Leaking? □ Appropriate for specific method? □ Caps tight? □ Air Bubbles? □ Adequate Volume? Labels: □ Unique ID? □ Date/Time □ Label and ink intact?
7	□ pH 24hr □ BACT 6/24hr □ CrVI 24hr □ NO3 48hr □ BOD 48hr □ Cl2 ASAP □ Turbidity 48hr □ DO ASAP □ Fe(II) ASAP □ HT Expired? □ Client notified? 3. Sample Container Condition Anomalies Documented? Type: □ plastic □ Delaysic □ Tube: brass/SS □ Tedlar Bag □ Quantity OK? □ Leaking? □ Appropriate for specific method? □ Caps tight? □ Air Bubbles? □ Adequate Volume? Labels: □ Unique ID? □ Date/Time □ Label and ink intact? 7. Turn Around Time □ Nature □ Std (7-10 days) □ Not Marked 8. Sample Matrix □ Drinking H2 O Other Liq □ Soil □ Wipe □ Polymer □ Air □ Other: □ Ground H2 O □ Sludge □ Filter □ Oil/Petro □ Paint □ W. Water □ Extract □ Unknown. • Pre-Login Check List Completed & OK? □ Preserved.
7	□ pH 24hr □ BACT 6/24hr □ CrVI 24hr □ NO3 48hr □ BOD 48hr □ Cl2 ASAP □ Turbidity 48hr □ DO ASAP □ Fe(II) ASAP □ HT Expired? □ Client notified? 3. Sample Container Condition Anomalies Documented? Type: □ plastic □ Delaysic □ Tube: brass/SS □ Tedlar Bag □ Quantity OK? □ Leaking? □ Appropriate for specific method? □ Caps tight? □ Air Bubbles? □ Adequate Volume? Labels: □ Unique ID? □ Date/Time □ Label and ink intact? 7. Turn Around Time □ Nature □ Std (7-10 days) □ Not Marked 8. Sample Matrix □ Drinking H2 O Other Liq □ Soil □ Wipe □ Polymer □ Air □ Other: □ Ground H2 O □ Sludge □ Filter □ Oil/Petro □ Paint □ W. Water □ Extract □ Unknown. • Pre-Login Check List Completed & OK? □ Preserved.
7	□ pH 24hr □ BACT 6/24hr □ CrVI 24hr □ NO₃ 48hr □ BOD 48hr □ Cl₂ ASAP □ Turbidity 48hr □ DO ASAP □ Fe(II) ASAP □ HT Expired? □ Client notified? 3. Sample Container Condition Anomalies Documented?

Organic Analysis Results for Method SW8270C

Client Name: Parsons Engineering Science Project No: Collection Date: 04/20/2005 Project ID: Camp Pendleton Service ID: 52336 Collected by: 05G1855-MB-01 Received Date: 04/20/2005 Lab Sample ID: Sample ID: 05G1855-MB-01 Sample Matrix Moisture %: Water Sample Type: Method Blank Prep. Method: 3510 Instrument ID: GC/MS: Y Anal. Method: SW8270C Prep. Date: 04/20/05 Anal. Date: 04/26/05 Batch No: 05G1855 Prep. No: Anal. Time: i of 1 12:03 Data File Name: G1855K01 Sample Amount: 1000 mL Dilution Factor: 1

Extract Vol. 1.0 mL

#	Component Name	CAS No	Unit	RL	Result	Qualifier
1	ACENAPHTHENE	83-32-9	μg/L	10	< 10	Ū
2	ACENAPHTHYLENE	208-96-8	$\mu g/L$	10	< 10	U
3	ANTHRACENE	120-12-7	$\mu g/L$	10	< 10	U
4	BENZ(A)ANTHRACENE	56-55-3	$\mu g/L$	10	< 10	U
5	BENZO(A)PYRENE	50-32-8	μg/L	10	< 10	ប
6	BENZO(B)FLUORANTHENE	205-99-2	$\mu g/L$	10	< 10	U
7	BENZO(G,H,I)PERYLENE	191-24-2	$\mu \mathrm{g}/\mathrm{L}$	10	< 10	U
8	BENZO(K)FLUORANTHENE	207-08-9	$_{\mu}\mathrm{g}/\mathrm{L}$	10	< 10	U
9	CHRYSENE	218-01-9	$_{\mu}\mathrm{g}/\mathrm{L}$	10	< 10	U
10	DIBENZ(A,H)ANTHRACENE	53-70-3	$_{\mu \mathrm{g}}/\mathrm{L}$	10	<10	U
11	FLUORANTHENE	206-44-0	$\mu g/L$	10	< 10	U
12	FLUORENE	86-73-7	$\mu g/L$	10	< 10	U
13	INDENO(1,2,3-CD)PYRENE	193-39-5	$\mu g/L$	10	< 10	U
14	2-METHYLNAPHTHALENE	91-57-6	$\mu g/L$	10	< 10	U
15	NAPHTHALENE	91-20-3	$\mu g/L$	10	< 10	U
16	PHENANTHRENE	85-01-8	$\mu g/L$	10	< 10	υ
17	PYRENE	129-00-0	$_{\mu \mathrm{g}}/\mathrm{L}$	10	< 10	U
Surr	rogates			Control Limit, %	Surro. Rec.%	
1	2-FLUOROBIPHENYL	321-60-8		40-129	92	
2	2-FLUOROPHENOL	367-12-4		20-119	48	
3	NITROBENZENE-D5	4165-60-0		40-128	69	
4	PHENOL-D5	4165-62-2		10-110	26	
5	TERPHENYL-D14	1718-51-0		40-134	71	
6	2,4,6-TRIBROMOPHENOL	118-79-6		20-129	93	
# 0	f out-of-control				0	
Inte	rnal Standard			Control Limit, %	IS Rec.%	
1	ACENAPHTHENE-D10	15067-26-2		50-200	75	
2	CHRYSENE-D12	1719-03-5		50-200	151	
3	1,4-DICHLOROBENZENE-D4	3855-82-1		50-200	110	
4	NAPHTHALENE-D8	1146-65-2		50-200	109	
5	PERYLENE-D12	1520-96-3		50-200	87	
6	PHENANTHRENE-D10	1517-22-2		50-200	108	
# 0	f out-of-control				0	

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Qualifier: U - Not Detected or less than MDL/IDL

F - Positively identified, but Less than RL

M - A matrix effect was present

T - TIC by GC/MS

E - Exceed calibration range

B - Analyte is detected in the associated method blank

J - Positively identified, the quantitation is estimated

R - unusable due to deficiencies

FORM-2C

Applied P & CH Laboratories

Surrogate Recovery Summary for Method SW8270C

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

. 101501

SAS No:

Service ID:

052336

Project ID:

Camp Pendleton

Project No:

Sample Matrix:

Water

Batch No:

05G1855

1 05G1855-LCS-01 05G1855-LCS-01 54 41 55 29 61 79 0 2 05G1855-LSD-01 05G1855-LSD-01 51 42 55 29 59 77 0 3 05G1855-MB-01 05G1855-MB-01 92 48 69 26 71 93 0 4 MW2296-5-0405 05-2336-4 83 46 83 27 91 122 0 5 0 0 0 0 0 0 0 0 0 0 6 0 </td <td></td> <td>Client</td> <td>Lab</td> <td>Sı</td> <td>S2</td> <td>S3</td> <td>S4</td> <td>S5</td> <td>S6</td> <td>тот</td>		Client	Lab	Sı	S2	S3	S4	S5	S6	тот
2 05G1855-LSD-01 05G1855-LSD-01 51 42 55 29 59 77 0 3 05G1855-MB-01 05G1855-MB-01 92 48 69 26 71 93 0 4 MW2296-5-0405 05-2336-4 83 46 83 27 91 122 0 5	#	Sample No	Sample ID	% #	% #	% #	% #	% #	% #	OUT
3 05G1855-MB-01 05G1855-MB-01 92 48 69 26 71 93 0 4 MW2296-5-0405 05-2336-4 83 46 83 27 91 122 0 5	1			54	41	55	29	61	79	0
4 MW2296-5-0405 05-2336-4 83 46 83 27 91 122 0 5 0	2			1	42		29	59	77	0
5 6 7 8 9 10 10 11 11 12 13 14 15 16 17 18 19 19 20 21 22 23	3		l .:				26	71	93	0
6	4	MW2296-5-0405	05-2336-4	83	46	83	27	91	122	0
7 8 9 10 11 11 12 13 13 14 15 16 17 18 19 20 21 22 23 23	5				<u> </u>					
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	6									
9	7									
10 11 12 13 14 15 16 17 18 19 20 21 22 23	8									
11 12 13 14 15 16 17 18 19 20 21 22 23	9									
12 13 14 15 16 17 18 19 20 21 22 23	10]				
13 14 15 16 17 18 19 19 20 21 22 23	11									
14 15 16 17 18 19 20 21 22 23	12									1
15 16 17 18 19 20 21 22 23	13									
16 17 18 19 20 21 22 23	14									
17 18 19 20 21 22 23	15									
18 19 20 21 22 23	16									
19 20 21 22 23	17									i
20 21 22 23	18									
21 22 23	19									
22 23 23	20									
23	21									
	22									
24	23									
	24						-			
25	25					 				

QC Control Limit

 S1 = 2-FLUOROBIPHENYL
 40-129

 S2 = 2-FLUOROPHENOL
 20-119

 S3 = NITROBENZENE-D5
 40-128

 S4 = PHENOL-D5
 10-110

 S5 = TERPHENYL-D14
 40-134

 S6 = 2,4,6-TRIBROMOPHENOL
 20-129

Tele: (909)590-1828 × 228

Column to be used to flag recovery values:

* - Values outside of contract required QC Limits

D - Surrogate diluted out

I - Matrix Interference

FORM-3C

Applied P & CH Laboratories

Lab Control Spike/Lab Control Spike Duplicate Recovery for Method SW8270C

Client Name: Parsons Engineering Science Contract No: Lab Code: APCL Case No: SAS No: Service ID: 52336
Project ID: Camp Pendleton Project No: Sample Matrix: Water

Batch No: 05G1855

LCS Filename: G1855L01 Date Analyzed: 042605 Time Analyzed: 10:46 LCSD Filename: G1855J01 Date Analyzed: 042605 Time Analyzed: 11:25

Spiked		Spike	Concentr	ation	LCS	QC Limit, %
Components	Unit	Added	Unspiked	LCS	Rec% #	REC
ACENAPHTHENE	μg/L'.	50	0	39.5	79	40-112
4-CHLORO-3-METHYLPHENOL	μg/L	100	0	82.4	82	41-105
2-CHLOROPHENOL	μg/L	100	0	60.6	61	44-102
1,4-DICHLOROBENZENE	μg/L	50	0	33.0	66	40-106
2,4-DINITROTOLUENE	μg/L	50	0	46.5	93	40-117
4-NITROPHENOL	μg/L	500	0	121	24	18-144
N-NITROSODI-N-PROPYLAMINE	μg/L	50	0	28.5	57	45-113
PENTACHLOROPHENOL	$_{\mu\mathrm{g/L}}$	500	0	379	76	27-138
PHENOL	μg/L	100	0	33.4	33	32-102
PYRENE	μg/L	50	0	37.1	74	40-119
1,2,4-TRICHLOROBENZENE	μg/L	50	0	41.0	82	40-108
# of Out-of-control	•	·	-	<u> </u>	0	

Spiked Components	Unit	Spike Added	LCSD Concentration	LCSD Rec% #	RPD% #	QC RPD	Limit, % REC
ACENAPHTHENE	μg/L	50	40.1	80	1	39	40-112
4-CHLORO-3-METHYLPHENOL	μg/L	100	84.4	84	2	36	41-105
2-CHLOROPHENOL	μg/L	100	59.5	60	2	36	44-102
1,4-DICHLOROBENZENE	μg/L	50	32.8	66	0	37	40-106
2,4-DINITROTOLUENE	μg/L	50	46.0	92	1	40	40-117
4-NITROPHENOL	μg/L	500	114	23	4	65	18-144
N-NITROSODI-N-PROPYLAMINE	μg/L	50	27.9	56	2	39	45-113
PENTACHLOROPHENOL	μg/L	500	398	80	5	61	27-138
PHENOL	μg/L	100	33.9	34	3	36	32-102
PYRENE	μg/L	50	36.1	72	3	38	40-119
1,2,4-TRICHLOROBENZENE	μg/L	50	41.3	83	1	35	40-108
# of Out-of-control	•			0	0		

Column to be used to flag recovery and RP

* _	- Values	outside of	contract	required	OC Lin	nits	D -	Si	ni'
	- values	outside of	contract	required	OC Lin	กเโร	D –	2	Ĭ

D - Spiked components diluted out

Comments:	 	 	

FORM-4B

Applied P & CH Laboratories

Method Blank Summary for Method SW8270C

Client Name: Parsons Engineering Science Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

52336

Project ID:

Camp Pendleton

Project No:

Analysis Date:

04/26/05 12:03

Sample ID:

Sample Matrix: Water Analysis Time:

GC/MS: Y

05G1855-MB-01 Lab Sample ID: 05G1855-MB-01

Batch No: Data File Name:

05G1855 G1855K01 Instrument ID: GC Column:

DB-5.625

Column ID:

0.25 mm

This Method Blank applies to the following samples and QC samples:

	Client	Lab	·	Data	Analysis	Analysis
#	Sample No	Sample ID	Sample Type	Filename	Date	Time
1	05G1855-LCS-01	05G1855-LCS-01	Lab Control Spike	G1855L01	04/26/05	10:46
2	05G1855-LSD-01	05G1855-LSD-01	Lab Control Spike Duplicate	G1855J01	04/26/05	11:25
3	MW2296-5-0405	05-2336-4	Field Sample	2336-04	04/26/05	14:48
4						
5						
6						
7						
8						
9						
10						
11						
12						<u> </u>
13	_,					
14						
15				<u> </u>		
16						
17						
18						
19						
20						i
21						
22						
23						
24						
25	_					

Applied P & CH Laboratories Organic Analysis Results for Method M8015E

Client Name:

Parsons Engineering Science

Project No:

52336

Collection Date: 04/19/2005

Collected by:

Project ID:

Camp Pendleton

Service ID: Lab Sample ID:

05G1844-MB-01 Received Date:

04/19/2005

Sample ID:

05G1844-MB-01

Sample Matrix

Water Moisture %: 3510

Instrument ID: GC: W

Sample Type: Anal. Method: Method Blank M8015E

Prep. Method: Prep. Date:

04/19/05 Anal. Date: Anal. Time: 04/21/05 23:57

Data File Name: 1844G.K01 Extract Vol.

Batch No:

1.0 mL

05G1844

rrep. No:	1 01 1	Ar
Sample Amount:	1000 mL	Di

dution Factor: 1

#	Component Name	CAS No	Unit	RL	Result	Qualifier
1	DIESEL	11-84-7	mg/L	0.1	< 0.1	U
Surr	ogates OCTACOSANE, C28	630-02-4		Control Limit, % 57-139	Surro. Rec.% 91	
# of	out-of-control				0	

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Qualifier: U - Not Detected or less than MDL/IDL

F - Positively identified, but Less than RL

M - A matrix effect was present

T - TIC by GC/MS

E - Exceed calibration range

B - Analyte is detected in the associated method blank

J - Positively identified, the quantitaion is estimated

R - unusable due to deficiencies

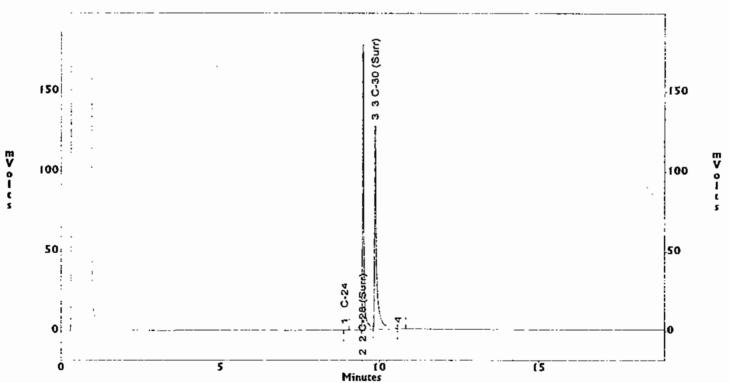
Applied P & Ch Lab

Total Extractable Petroleum Hydrocarbon Analysis by GC-FID Instrument ID: GC-W, Column: DB-1 (0.32mm x 15m x 0.25 um), lul

File : c:\data\0504\ds12w\05g1832\1844g.k01
Method : c:\ezchrom\methods\Ds12-056.w00

Sample ID : mb f=0.001

Vial : 1 Volume : 2


Acquired : Apr 21, 2005 23:57:39 Printed : Apr 22, 2005 00:16:39

User : Linda Liang File Desc. : Continue

Channel A Results

Name	Time	Area	AVE RF	Conc (ppm)
C-10	3.59	0	0.000	0.000
C-16	6.63	0	0.000	0.000
C-22	8.32	0	0.000	0.000
C-24	8.92	1271	0.000	0.000
2 C-28 (Surr)	9.48	487816	10757.817	45.345
3 C-30 (Surr)	9.87	539795	10638.618	50.739
C-36	12.12	0	0.000	0.000
1 Diesel cl0~c24		0	12992.507	0.000
4 Motor oil c24-	·c36	4454	5674.990	0.785
5 JP5 c8-c16		0	12037.801	0.000

c:\data\0504\dsf2w\05g1832\1844g.k01 -- Channel A

FORM-2C Applied P & CH Laboratories

Surrogate Recovery Summary for Method M8015E

Client Name: Parsons Engineering Science Contract No:

Lab Code:

APCL

Case No:

SAS No:

SDG Number:

052336

Project ID:

Camp Pendleton

Project No:

Sample Matrix:

Water

Batch No:

05G1844

	Client	Lab	Sı	TOT
#	Sample No	Sample ID	% #	OUT
1	05G1844-LCS-01	05G1844-LCS-01	111	0
2	05G1844-LSD-01	05G1844-LSD-01	117	0
3	05G1844-MB-01	05G1844-MB-01	91	0
4	MW2296-2-0405	05-2336-2	118	0
5	MW2296-3-0405	05-2336-3	96	0
6	MW2296-5-0405	05-2336-4	93	0
7	MW2296-6-0405	05-2336-5	113	0
8	MW2296-1-0405	05-2336-1	98	0
9				
10				
11			1	
12				
13				
14				
15	,		<u> </u>	
16				
17			· · · · · · · · · · · · · · · · · · ·	
18				
19				<u> </u>
20				
21	7.	 	<u> </u>	
22	***************************************		· 	
23			 	<u> </u>
24		·	 	
25		-	 	

QC Control Limit

57-139

S1 = N-OCTACOSANE

Column to be used to flag recovery values:

* - Values outside of contract required QC Limits

D - Surrogate diluted out

Tele: (909)590-1828×228

I - Matrix Interference

FORM-3C

Applied P & CH Laboratories

Lab Control Spike/Lab Control Spike Duplicate Recovery for Method M8015E

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

Comments:

SAS No:

Service ID:

52336

Project ID:

Camp Pendleton

Project No:

Sample Matrix:

Water

LCS Filename: 1844G.L01

Batch No: 05G1844 Date Analyzed: 042105

Time Analyzed:

23:06

LCSD Filename: 1844G.J01

Date Analyzed: 042105

Time Analyzed:

23:32

Spiked		Spike	Concentration		LCS	QC Limit, %
Components	Unit	Added	Unspiked	LCS	Rec% #	REC
DIESEL	mg/L	1	0 0.968		97	56-129
# of Out-of-cor	ntrol	0				

Spiked		Spike	LCSD	LCSD		QC Limit, %
Components	Unit	Added	Concentration	Rec% #	RPD% #	RPD REC
DIESEL	mg/L	1	1.03	103	6	49 56-129
# of Out-of-con	trol		_	0	O	

# (Column	to	Ьę	used	to	flag	гесочету	and	RPD	values:
-----	--------	----	----	------	----	------	----------	-----	-----	---------

^{* -} Values outside of contract required QC Limits

D - Spiked components diluted out

Applied P & CH Laboratories Organic Analysis Results for Method RSK175

Client Name: Parsons Engineering Science

05G1854

Data File Name: 1854G.K01

Project ID: Camp Pendleton Project No: Service ID:

52336

Collection Date: 04/20/2005

Collected by:

Sample ID:

Batch No:

05G1854-MB-01

Lab Sample ID: Sample Matrix

05G1854-MB-01 Received Date: Water

Moisture %:

04/20/2005

Sample Type: Anal. Method:

Method Blank RSK175

Prep. Method: Prep. Date: Prep. No:

Sample Amount: 33 mL

Instrument ID: GC: K Anal. Date: Anal. Time:

04/20/05 14:13 Dilution Factor: 1

Extract voi.		·		·			
#	Component Name	CAS No	Unit	RL	Result	Qualifier	
I	METHANE	74-82-8	ug/L	3	<3	υ	

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Qualifier: U - Not Detected or less than MDL/IDL

F - Positively identified, but Less than RL

M - A matrix effect was present

T - TIC by GC/MS

E - Exceed calibration range

B - Analyte is detected in the associated method blank

J - Positively identified, the quantitaion is estimated

R - unusable due to deficiencies

FORM-3C

Applied P & CH Laboratories

Lab Control Spike/Lab Control Spike Duplicate Recovery for Method RSK175

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

52336

Project ID:

Camp Pendleton

Project No:

Sample Matrix:

Water

LCS Filename: 1854G.L01

Batch No: 05G1854 Date Analyzed: 042005

Time Analyzed:

13:51

LCSD Filename: 1854G.J01

Date Analyzed: 042005

Time Analyzed:

13:54

Spiked		Spike	Concentr	ation	LCS	QC Limit, %
Components	Unit	Added	Unspiked LCS		Rec% #	REC
METHANE	$_{\mu}\mathrm{g/L}$	19.8	0	0 17.8		65-122
# of Out-of-con	trol				0	

Spiked		Spike	LCSD	LCSD		QC Limit, %
Components	Unit	Added	Concentration	Rec% #	RPD% #	RPD REC
METHANE	METHANE μg/L 19.8 17.4		17.4	88	2	34 65-122
# of Out-of-con	trol		0	0		

Column to be used to flag recovery and RPD values:

D - Spiked components diluted out

Comments:

^{* -} Values outside of contract required QC Limits

FORM-3C

Applied P & CH Laboratories

Matrix Spike/Matrix Spike Duplicate Recovery for Method RSK175

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

52336

Project ID:

Camp Pendleton

Project No: Batch No:

Sample Matrix:

Water

MS Filename:

1854G.M01

Date Analyzed: 042005

Time Analyzed:

15:16

MSD Filename: 1854G.N01

Date Analyzed: 042005

Time Analyzed:

15:19

MS Sample No: MW22187-10A-0405

Sample Lab ID: 05-2314-5

05G1854

Spiked		Spike	Concentration		MS	QC Limit, %
Components	Unit	Added	Unspiked	MS	Rec% #	REC
METHANE	$_{\mu\mathrm{g}/\mathrm{L}}$	19.8	0 16.9		85	65-132
# of Out-of-cor	trol	0				

Spiked		Spike	MSD	MSD		QC Limit, %
Components	Unit	Added	Concentration	Rec% #	RPD% #	RPD REC
METHANE	$_{\mu}\mathrm{g/L}$	19.8	16.7	84	1	34 65-132
# of Out-of-con	trol			0	0	

Column to be used to flag recovery and RPD values:

* - Values outside of contract required QC Limits

D - Spiked components diluted out

Comments:	•	

Tele: (909)590-1828 × 228

FORM-4B

Applied P & CH Laboratories

Method Blank Summary for Method RSK175

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

52336

Project ID:

Camp Pendleton

Project No:

Analysis Date:

04/20/05

Sample ID:

Sample Matrix: Batch No:

Water 05G1854

Analysis Time: Instrument ID:

14:13 GC: K

Lab Sample ID: 05G1854-MB-01

05G1854-MB-01

Data File Name: 1854G.K01

GC Column: Column ID:

GSQ $0.53 \ mm$

This Method Blank applies to the following samples and QC samples:

	Client	Lab		Data	Analysis	Analysis
#	Sample No	Sample ID	Sample Type	Filename	Date	Time
1	-	05G1854LCS01	Lab Control Spike	G1854L01	04/20/05	13:51
2		05G1854LSD01	Lab Control Spike Duplicate	G1854J01	04/20/05	13:54
3	MW2296-1-0405	05-2336-1	Field Sample	2336.001	04/20/05	14:44
4	MW2296-2-0405	05-2336-2	Field Sample	2336.002	04/20/05	14:52
5	MW2296-3-0405	05-2336-3	Field Sample	2336.103	04/20/05	14:59
6	MW2296-5-0405	05-2336-4	Field Sample	2336.104	04/20/05	15:10
7	MW22187-10A-0405MS	05-2314-5MS	Matrix Spike	1854G.M01	04/20/05	15:16
8	MW2296-6-0405	05-2336-5	Field Sample	2336.005	04/20/05	15:14
9	MW22187-10A-0405MSD	05-2314-5MSD	Matrix Spike Duplicate	1854G.N01	04/20/05	15:19
10						
11						
12						
13	-					
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						

Tete: (909)590-1828×728

Applied P & CH Laboratories Wet Analysis Results for Method 310.1

Client Name: Parsons Engineering Science

Project No:

Anal. Method

310.1

Project ID:

Camp Pendleton

Service ID:

52336

Collected by:

CD

Component Name: Alkalinity CAS No:

10-09-3

Lab ID	Sample ID	Matrix	Coll. Date	Rcv Date	Anal. Date	Batch	Unit	RL	Result	Q
05-2336-1	MW2296-1-0405	Water	04/15/05	04/15/05	04/19/05	05W2115	mg/L	2	1800	
05-2336-2	MW2296-2-0405	Water	04/15/05	04/15/05	04/19/05	05W2115	mg/L	2	300	
05-2336-3	MW2296-3-0405	Water	04/15/05	04/15/05	04/19/05	05W2I15	mg/L	2	1500	
05-2336-4	MW2296-5-0405	Water	04/15/05	04/15/05	04/19/05	05W2115	mg/L	2	600	
05-2336-5	MW2296-6-0405	Water	04/15/05	04/15/05	04/19/05	05W2115	mg/L	2	580	
05W2115-MB-01	05W2115-MB-01	Water	04/19/05	04/19/05	04/19/05	05W2115	mg/L	2	< 2	U

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Note: Q - Qualifier.

Qualifier: U - Not Detected or less than MDL

Wet Analysis Results for Method 300.0

52336

Client Name: Parsons Engineering Science

Project No:

Anal. Method

300.0

Project ID:

Camp Pendleton

Service ID:

Collected by:

CD

Component Name: Nitrate as N CAS No:

14797-55-8

Lab ID	Sample ID	Matrix	Coll. Date	Rcv Date	Anal. Date	Batch	Unit	RL	Result	Q
05-2336-1	MW2296-1-0405	Water	04/15/05	04/15/05	04/15/05	05W2074	mg/L	6	3.6	F
05-2336-2	MW2296-2-0405	Water	04/15/05	04/15/05	04/15/05	05W2074	mg/L	1.2	2.2	
05-2336-3	MW2296-3-0405	Water	04/15/05	04/15/05	04/15/05	05W2074	mg/L	12	6.7	F
05-2336-4	MW2296-5-0405	Water	04/15/05	04/15/05	04/15/05	05W2074	mg/L	3	1.4	F
05-2336-5	MW2296-6-0405	Water	04/15/05	04/15/05	04/15/05	05W2074	mg/L	1.2	4.7	
05W2074-MB-01	05W2074-MB-01	Water	04/15/05	04/15/05	04/15/05	05W2074	mg/L	0.06	< 0.06	U

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Note: Q - Qualifier.

Qualifier: U - Not Detected or less than MDL

Applied P & CH Laboratories Wet Analysis Results for Method 300.0

Client Name: Parsons Engineering Science

Project No:

Anal. Method

300.0

Project ID:

Camp Pendleton

Service ID:

52336

Collected by:

CD

Component Name: Sulfate CAS No:

14808-79-8

Lab ID	Sample ID	Matrix	Coll. Date	Rcv Date	Anal. Date	Batch	Unit	RL	Result	Q
05-2336-1	MW2296-1-0405	Water	04/15/05	04/15/05	04/15/05	05W2074	mg/L	50	300	
05-2336-2	MW2296-2-0405	Water	04/15/05	04/15/05	04/15/05	05W2074	mg/L	10	75	
05-2336-3	MW2296-3-0405	Water	04/15/05	04/15/05	04/15/05	05W2074	mg/L	100	650	
05-2336-4	MW2296-5-0405	Water	04/15/05	04/15/05	04/15/05	05W2074	mg/L	25	150	
05-2336-5	MW2296-6-0405	Water	04/15/05	04/15/05	04/15/05	05W2074	mg/L	10	95	
05W2074-MB-01	05W2074-MB-01	Water	04/15/05	04/15/05	04/15/05	05W2074	mg/L	0.5	< 0.5	U

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Note: Q - Qualifier.

Qualifier: U - Not Detected or less than MDL

Wet Analysis Results for Method SM3500DFE-

Client Name: Parsons Engineering Science

Project No:

Anal. Method

SM3500DFE-

Project ID:

Camp Pendleton

Service ID: 52336

Collected by:

CD

Component Name: Iron (II)

CAS No:

Lab ID	Sample ID	Matrix	Coll. Date	Rcv Date	Anal. Date	Batch	Unit	RL	Result	Q
05-2336-1	MW2296-1-0405	Water	04/15/05	04/15/05	04/15/05	05W2069	mg/L	0.05	0.074	
05-2336-2	MW2296-2-0405	Water	04/15/05	04/15/05	04/15/05	05W2069	mg/L	0.05	< 0.05	U
05-2336-3	MW2296-3-0405	Water	04/15/05	04/15/05	04/15/05	05W2069	mg/L	0.05	< 0.05	U
05-2336-4	MW2296-5-0405	Water	04/15/05	04/15/05	04/15/05	05W2069	mg/L	0.05	< 0.05	U
05-2336-5	MW2296-6-0405	Water	04/15/05	04/15/05	04/15/05	05W2069	mg/L	0.05	0.086	
05W2069-MB-01	05W2069-MB-01	Water	04/15/05	04/15/05	04/15/05	05W2069	mg/L	0.05	< 0.05	U

Not Detected is shown as PQL, with dilution and moisture corrected if applicable.

Note: Q - Qualifier.

Qualifier: U - Not Detected or less than MDL

Applied P & CH Laboratories

Lab Control Spike/Lab Control Spike Duplicate Recovery for Method 310.1

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

52336

Project ID:

Camp Pendleton

Project No: Batch No:

Sample Matrix:

Water

LCS Filename: -

Date Analyzed: 041905

05W2115

Time Analyzed:

15:19

LCSD	Filename:	-

Date Analyzed: 041905

Time Analyzed: 15:19

Spiked		Spike	Concen	tration	LCS	QC Limit, %
Components	Unit	Added	Unspiked	LCS	Rec% #	REC
ALKALINITY	mg/L	100	0	102	102	90-110
# of Out-of-contr	ol				0	

Spiked Components	Unit	Spike Added	LCSD Concentration	LCSD Rec% #	RPD% #	QC Limit, % RPD REC
ALKALINITY	mg/L	100	100	100	2	10 90-110
# of Out-of-contr	ol			0	D	

# Column to be used to flag recovery and RPD valu	#	Column	to be	used	to	flag	recovery	and	RPD	value
---	---	--------	-------	------	----	------	----------	-----	-----	-------

* - 1	/alues	outside	oſ	contract	required	QC	Limit
-------	--------	---------	----	----------	----------	----	-------

Comments:	 	 	

D - Spiked components diluted out

Applied P & CH Laboratories

Lab Control Spike/Lab Control Spike Duplicate Recovery for Method 300.0

Client Name: Parsons Engineering Science Contract No: Lab Code: APCL SAS No: Case No: Service ID: 52336 Project ID: Camp Pendleton Project No: Sample Matrix: Water Batch No: 05W2074

DATCH ING: UNIVERSITY 2017

LCS Filename: - Date Analyzed: 041505 Time Analyzed: 10:03

LCSD Filename: - Date Analyzed: 041505 Time Analyzed: 10:15

Spiked		Spike	Spike Concentration			QC Limit, %
Components	Unit	Added	Unspiked	LCS	Rec% #	REC
NITRATE AS N	mg/L	1.5	0	1.49	. 99	86-110
SULFATE	mg/L	15	0	14.6	97 .	82-110
# of Out-of-control		0				

Spiked		Spike	LCSD	LCSD		QC Limit, %
Components	Unit	Added	Concentration	Rec% #	RPD% #	RPD REC
NITRATE AS N	mg/L	1.5	1.50	100	1	13 86-110
SULFATE	mg/L	15	14.6	97	0	17 82-110
# of Out-of-control		0	0			

# Column to be used to flag recovery and RPD	D values:
--	-----------

' - Values outside o	f contract required	QC Limits	D - Spiked	components d	liluted out

Comments:	 ··· <u>·</u> ····	······································	_

Applied P & CH Laboratories

Matrix Spike/Matrix Spike Duplicate Recovery for Method 300.0

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

SAS No: Project No: Service ID:

52336

Project ID:

Camp Pendleton

Batch No: 05W2074 Sample Matrix:

Water

MS Filename:

Date Analyzed: 041505

Time Analyzed:

14:25

MSD Filename: -

Date Analyzed: 041505

Time Analyzed:

14:38

MS Sample No: U8-133

Sample Lab ID: 05-2316-2

Spiked		Spike	Concente	ation	MS	QC Limit, %
Components	Unit	Added	Unspiked	MS	Rec% #	REC
NITRATE AS N	mg/L	37.5	19	57.2	102	86-112
SULFATE	mg/L	375	30	403	99	83-116
# of Out-of-control					0	

Spiked		Spike	MSD	MSD		QC Limit, %
Components	Unit	Added	Concentration	Rec%#	RPD% #	RPD REC
NITRATE AS N	mg/L	37.5	51.2	86	17 *	13 86-112
SULFATE	mg/L	375	341	83	18 *	17 83-116
# of Out-of-control		0	2			

# C	Column	to	Ьę	used	to	flag	recovery	and	RPD	values:
-----	--------	----	----	------	----	------	----------	-----	-----	---------

 Values outside of contract required QC : 	 Values 	outside of co	ntract rec	nuired O	Ն հյուն
--	----------------------------	---------------	------------	----------	---------

Comments:		
	•	

D - Spiked components diluted out

Applied P & CH Laboratories

Lab Control Spike/Lab Control Spike Duplicate Recovery for Method SM3500DFE-

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

SAS No:

0

Service ID:

98

0

52336

Project ID:

Camp Pendleton

mg/L

Date Analyzed: 041505

Sample Matrix:

Water

LCS Filename: LCSD Filename: -

IRON (II)

of Out-of-control

Project No: Batch No: Date Analyzed: 041505

05W2069

0.490

Time Analyzed: Time Analyzed: 18:37 18:37

QC Limit, % REC

80-120

ĺ	Spiked		Spike	Concentr	ation	LCS
	Components	Unit	Added	Unspiked	LCS	Rec% #

0.5

						_
Spiked		Spike	LCSD	LCSD		QC Limit, %
Components	Unit	Added	Concentration	Rec% #	RPD% #	RPD REC
IRON (II)	mg/L	0.5	0.490	98	0	25 80-120
# of Out-of-cor	ıtrol			0	0	

[#] Column to be used to flag recovery and RPD values:

٠_	Values	ontside	۸ſ	contract	reanited	OC	Lim	it
_	YAJUES	Outside	UL	COHLINEL	redmitéd	Q.C	PHILI	LL

Comments:			
	-		

Tele: (909)590-1828×228

D - Spiked components diluted out

Applied P & CH Laboratories

Matrix Spike/Matrix Spike Duplicate Recovery for Method SM3500DFE-

Client Name:

Parsons Engineering Science

Contract No:

Lab Code:

APCL

Case No:

٥.

SAS No:

Service ID:

52336

Project ID:

Camp Pendleton

Project No: Batch No:

05W2069

Sample Matrix:

Water

MS Filename:

Date Analyzed: 041505

Time Analyzed:

18:37

MSD Filename: -

MS Sample No: MW2296-1-0405

Date Analyzed: 041505 Sample Lab ID: 05-2336-1 Time Analyzed:

18:37

Spiked		Spike	Concentration		MS	QC Limit, %
Components	Unit	Added	Unspiked	MS	Rec% #	REC
IRON (II)	mg/L	0.5	0.074	0.540	93	75-125
# of Out-of-cor	itrol	0				

Spiked		Spike	MSD	MSD		QC Limit, %
Components	Unit	Added	Concentration	Rec% #	RPD% #	RPD REC
IRON (II)	mg/L	0.5	0.540	93	0	25 75-125
# of Out-of-con	itrol		0	0		

# 0	Column	to	bе	used	to	Rag	recovery	and	RPD	values:
-----	--------	----	----	------	----	-----	----------	-----	-----	---------

Comments:	·

Tele: (909)590-1828×228

^{* -} Values outside of contract required QC Limits

D - Spiked components diluted out

Wet Chemistry QC Report B Duplicate Results

Matrix: Water

APCL Service ID: 05-2336

Analysis	Batch ID	Analysis Date	Sample Name	Unit	Result	Duplicate	RPD %	RPD
	-2			d .		Result		Control limit
Alkalinity	05W2115	4/19/05	MW2296-6-0405	mg/L	583.8	589.2	1	20

Note: N/A = Not applicable; NR: Not requested; NC= Not Calculated; ND: Not detected.

APPENDIX D REGIONAL WATER QUALITY CONTROL BOARD MEETING NOTES

PARSONS

100 W Walnut St, Pasadena, CA 91124

(626) 440-4000

Fax (626) 440-6200

Meeting Notes

Subject:	Meeting Notes regarding Projec	t Update Meetin	g for 8 UST Sites, MCB Camp
Y	Pendleton	- O- 6 - D	
Location:	AC/S ES Office Bldg. 22165, Lib	rary Conterence R	coom
Date:	2/10/2005	Time:	9:00 AM
Project:	UST Sites, Camp Pendleton	Facilitator &	C. Silver, Parsons
Project No.:	733868.01000	Recorded By:	
Attendees Na	ame/Company		
Bipin Patel	SWDIV	Laurie Walsh	RWQCB
Chet Storrs	MCB Camp Pendleton AC/S	Cannon Silver	Parsons

Item .	Meeting Notes	Action
1.	Parsons gave an overview of site locations, contaminants, cleanup goals, and remediation history.	None.
2.	Discussed EPA Guidance for evaluation of biosparging effectiveness. Discussed recent guidance to maintain DO above 2 mg/L, and efforts to optimize system operation to achieve higher DO. Parsons professional judgment is that sparging pure oxygen would not significantly improve performance. Discussed success in observing oxygen utilization at the sites.	Parsons to use 2 mg/L as DO goal, and to continue to try optimizing system operation to reach this concentration.
3.	Chet clarified that entire Base is within a beneficial use aquifer, but that comparing sites to the EPA guidance on low-risk soil and groundwater sites can be useful as an evaluation of remedial progress. He noted that other sites on Base have been closed even with groundwater monitoring results above MCLs.	Noted.
4.	Discussed Site 22187. Noted that oxygen utilization remains at ~1%/day, suggesting that continued biosparging may be useful in removing residual biodegradable petroleum hydrocarbons within the vadose zone.	Biosparging will continue at Site 22187 until a further reduction in oxygen utilization is observed. Parsons to use multiple lines of evidence to evaluate system performance, including accepted models such as Bioscreen TM . Post remediation monitoring will include one year of groundwater monitoring and soil confirmation sampling.
5.	Discussed whether analysis for benzene and MTBE may be discontinued at Site 22187. Benzene has not been detected above cleanup	Laurie to ask others at the RWQCB.

(626) 440-4000

Fax (626) 440-6200

Item	Meeting Notes	Action
	goals since April 2002, and MTBE remains well below cleanup goals.	
6.	Discussed Site 2296, including the Response to Comments. Soil borings installed in February 2003 indicated that leachable TPH remained under the street, and remediation during 2004 focused on this area. 2004 soil gas monitoring oxygen utilization rates are now zero, indicating that residual vadose zone soil contamination has now been removed. Benzene MCL has been met, and dissolved-phase TPHd concentrations in MW2296-5 are decreasing.	Parsons to discontinue biosparging system operation. One-year of groundwater monitoring will include April and October 2005 events. After one year, the System Performance Review Report will be submitted, possibly with recommendations for no further action.
7.	Discussed delivery of QA/QC data to RWQCB.	Parsons to send CD with 2 nd Quarter 2004 QA/QC data to Camp Pendleton, who will then forward to RWQCB.
8.	The site number reference system was discussed.	Parsons to update numbers on Response to Comments.
9.	Discussed Site 1121. Benzene concentrations are asymptotic in MW1121-8, and non-detect in MW-10A. TPHd continues to fluctuate in MW1121-8 and MW-10A, possibly as a result of BS system operation. Laurie noted that closure may be argued based on the distance to the nearest Base drinking water well (9,300 feet from neighboring Site 1131), that TPHd has only a taste and odor threshold, and that biodegradation is occurring.	Parsons to shutdown biosparging system for one year to see if TPHd concentrations stabilize, perform soil confirmation sampling to document percent reduction, and then present the case for site closure.
10.	Discussed Site 1131. Cleanup goals for benzene have been met. TPHd concentrations continue to fluctuate in MW1131-1, due to submerged residual pockets of petroleum hydrocarbons within the weathered grandiolite. Overall plume is stable. Downgradient well MW1131-8 remains near cleanup goals.	shutdown biosparging system for one year to see if TPHd concentrations stabilize, perform soil confirmation sampling to document percent reduction, and then present the case for site closure.
11.	Discussed Site 43302. TPHd concentrations have increased as groundwater elevations have decreased. Benzene concentrations have continued to decrease. Oxygen utilization continues at ~0.5%/day.	Biosparging will continue at Site 43302 until a further reduction in oxygen utilization is observed. Continue to work on reaching MCL for benzene.
12.	Discussed Site 53435. No benzene at the site. Discussed how increasing TPHd concentrations may be related to the decreasing groundwater elevations or to BS system operation. Suggested turning off the system for 3 months to evaluate	Parsons to turn off the system for 3 months to evaluate whether TPH concentrations stabilize. The 4 th Quarter 2004 System and Groundwater Monitoring Report will be revised to

PARSONS

100 W Walnut St, Pasadena, CA 91124

(626) 440-4000

Fax (626) 440-6200

a Tremes	Meeting Notes	Action ()						
103635	impact on GW concentrations. Soil gas	include a further evaluation of						
	sampling indicates that residual biodegradable	1						
i i	petroleum compounds remain in the subsurface.	trends.						
	Discussed elevated TPH measured in							
1 1	downgradient MW53435-8. Discussed whether	7- x 1000						
1	there were two sources and plumes present,							
 	based on 1997 soil boring data. Mentioned that							
1 1	the site has a high groundwater velocity. Laurie							
]	mentioned that the proximity to the San Onofre							
	Creek is a concern.							
Site visits	were conducted to 22187, 2296, 1121, 1131,	43302, and 53435. The site visits were						
concluded	concluded at approximately 14:00.							
cc: All								
Martha Araujo, NFESC								
File	<u>e</u>							